
DTIS ECTE
~OF~ DEC 15 19MS

Iu SE OF HYPERMEDIA AS A USER INTERFACE

FOR AN ARTIFICIAL INTELLIGENCE-BASED

PROBLEM SOLVER

THESIS

Daniel J. Florian, B.S.

Captain, UJS AF

AFIT/GCS/ENG/89D -.3

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSIT

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterso~n Air Force Bose, Ohio

_______ 89 12 14 0184
DI 1b ~- 1l~

I0
AFIT/GCS/ENG/89D-3

USE OF HYPERMEDIA AS A USER INTERFACE

FOR AN ARTIFICIAL INTELLIGENCE-BASED

PROBLEM SOLVER

THESIS

Daniel J. Florian, B.S.

Captain, USAF
AFIT/GCS/ENG/89D-3 D TIC

fl ELECTE
DEC1519891 3

Approved for public release, distribution unlimited

AFIT/GCS/ENG/89D-3

USE OF HYPERMEDIA AS A USER INTERFACE

FOR AN

ARTIFICIAL INTELLIGENCE-BASED PROBLEM SOLVER

'I Iicsis

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Techi-,ology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Daniel J. Florian, B.S.

Captain, USAF

December 1989

Approved for public release; distribution unlimiced

Acknowledgements

I would like to take this little bit of time to recoguize the people who invested, in

their own special way, so much of their time in this research project. I am quite sure that

without the contributions of these people, the success of this project would have been

questionable.

i would like to start by recogni'inO the most important person in my 1f;f,- my wife

Kathy. It was her constant support that gave me that extra push I sometimes needed to

keep going during the rough times. It was her constant love and attention which comforted

our children through the many times their "daddy" was working late at school. I will never

forget all Kathy did for our family during this time. Also, many thanks and kisses go out

to my beautiful children: Joy, Jill, and Beth. Their love and smiling faces make life so

much fun and worthwhile.

I want to offer special tha',ks to these three individuals for contributing their time and

their talents: Lt Col Charles Bisbee, Capt Eric Hansen, and Mr Jim Neri. Tiese gentcmen

always showed enthusiasm and sincere interest in this project. Never did it appear to me as

though they were just going through the motions (although I've been told that I am easily

fooled!). Tha., arlie (can I call you that sir?). Whenever I thought I had too much to

do and too little time, I would walk by your office and see someone who really had too

much to do and too little time, and this would make me feel better. Your professionalism

and perseverance are respected and will be used as a "blueprint" from which I will try to

build a copy. Thanks Eric. Your expert knowledge (no pun intended) and friendship will

always be remembered and very much appreciated. Thanks Jim. This project is a success

because you shared your many years of extremely technical knowledge in such an easily El

understandable way that even when I was a lieutenant I understood what you were talking

about. _JI -.t ,-1'-.t Ion/
(', Avaltnbllity Codes

jAWU 0 nd/or
Dist Spec ia

I would like to thank Dr Frank Brown for taking time to read this thesis and also for

the opportunity to be a student of his. Thanks also go out to Capt Steve Rasmussen. If it

was not for Steve, none of this would have ever happened (i.e., so he is the one to

blame!). Lastly, I want to thank the following WRDC/TXI people for their help: Bill

Baker for letting me "move into" his shop and for always making me feel like I belong,

Mike Wellman for his friendship and for not bumping me off the Macintosh when he

needed it, and Wilma Bridges for her cheery disposition and for always offering her help.

I cannot immediately say I would like to do this again, but if I did, I wouldn't mind

as much if it involved working with all of you.

Thanks again,

Dan

iii

Table of Contents

Ackno,1uh*dgements ii

List of Figures vi

List of Tables vii

Abstract viii

I. Introduction 1-1

1.1 Problem Satement 1-2
1.2 Background 1-2

1.2.1 User Interface 1-2
1.2.2 Hypermedia -
1.2.3 Expert Systems 1-3

1.2.3.1 Expert System User Interface1-5
1.3 Problem Domain 1-6
1.4 Approach and Methodology 1-6

1.4.1 Knowleoqe Acquisition Phase 1-7
1.4.2 Hypermedia and Expert System Integration Phase1-7
1.4.3 Design and Coding Phase 1-8
1.4.4 User Evaluation Phase 1-9

1.5 Hardware and Software 1-10
1.6 Other Support I-10
1.7 Conclusions I-I

11. Review of Related Work f-1

2.1 1lypermedia. I-1
2.1.1 Current Hypermedia Systems I.H-3

2.2 Al-Based Problem Solving Strategies 11-4
2.2.1 User Interfaces of Current Expert System Tools 11-7

2.3 Related Military Projects 11-8
2.4 Related Tools 11-9

111. Dual Miniature Inertial Navigation System (DMINS) 111-1

3.1 Background I11-1

3.2 DMINS Testing and Troubleshooting Procedures 111-2
3.2.1 Mode B Testing 111-3

I...1 Mode B Troubleshooting Procedures......... III-4
3.2.2 Mode A Testing111-5

3.2.2.1 Mode A Troubleshooting Procedures111-6
3.3 Scope of the Problem Domain 111-6
3.4 Observations 111-7

iv

Table of Contents (cunt.)

IV. Protc'type Development V-1

4.1 Development of Mode B IV- 1
4. 1.1 Knowledge Acquisition Phase. IV- 1
4.1.2 Hypermedia and Expert System Integration Phase IV-3
4.1.3 Design and Coding Phase IV-3
4.1.4 User Evaluation Phase. V-5
4.1.5 Observations and Conclusions. V-5

4.2 Development of Mode A IV-6
4.2.1 Knowledge Acquisition Phase. IV-7
4.2.2 Hypermedia and Expert System Integation Phase- 9

4.2.2.1 KMS Provisions for Interprocess Communication I V-Il1
4.2.2.2 CLIPS Provisions for Interprocess Communication . IV- 13

4.2.3 Design and Coding Phase. IV-13
4.2.4 User Evaluation Phase V-iS
4.2.5 Observations and Conclusions IV- 15

4.3 Integration of Mode B and Mode A IV- 16
4.4 Constraining KMS's Capabilities. IV-17
4.5 Difficulty During Development. V- 18

V. Conclusions and Recommendations. V-i

5.1 Conclusions. V-1
5.2 Recommendations. V-2

5.2.1 DMINS. V-2
5.2.2 Hypermedia System and Expert System Integration V-3

5.3 Summary. V-4

Appendix A: DMJNS Shop Replaceable Units (SRUs). A-i

Appendix B: DMINS Error Messages B-I

Appendix C: DN4INS Calibration Parameters C-i

Appendix D: First Nine Mode B Tests and Subtests. D- 1

Appendix E: CLIPS Source Code. E-1

Appendix F: Frames for Troubleshooting Test B6.1 F- I

Appendix G: Modified CLIPS Main Routine. G- 1

Bibliography BIB-lI

Vita. VITA- I

V

List of Figures

Figure Page

1. 1 Example of a Hypermedia Network. 1-4

1.2 GoldWorks 11 Code to Create a Menu 1-5

1.3 Example of a Rule's User Interface Using Both a Text-based and

Hypermedia-based Approach. 1-9

2.1 The Representation of Legal Heuristics for Product Liability Written Using

ROSIE 11-6

3.1 DMINS ATE Configuration. 111-3

4.1 Mode B Test B6. 1 Troubleshooting Procedures and Cuirespond-Ing

Hypermedia Frames V-4

4.2 Interprocess Communication Scenario. V-10

4.3 Example of KMS Frame with Two Buttons....... I1

4.4 Example of a KMS Button's Properties -12

4.5 Same Rule Written in S.1I and CLIPS V-15

4.6 Prototype Main Menu Frame 17

vi

List of Tables

Table Page

4.1 Excerpt From Mode B Troubleshooting Chart IV-2

4.2 Interprocess Communication Files and Their Function IV-9

4.3 Four CLIPS Interprocess Communication Rules and Associated Functions IV-14

vii

Abstract

The use of expert systems as the problem solving strategy in maintenance diagnostic

environments has proliferated in the last few years. This is due primarily to the ease with

which a diagrnostic system can be developed using the expert system approach compared to

using other techniques, particularly conventional programming. One important feature

which determines the success of such a system is the user interface. Typically, the user

interface of an expert system is entirely textual. While developing graphical user interfAce,

are possible, it requires the programmer to either intcgi .e the expert svstcn w ih texternall

written graphics routines, or to use the expert system',, .,An. usuallv LISP hscd.

programming language. Either mcthod requires experienced programmers to perform

many iterations of code development until the user interface is complete. Additionally, in

complex problem domains such as maintenance diagnostics, it is often difficult to

accurately represent the problem in words alone. Especially for the novice, describing the

problem n,: only in words but also with graphics, facilitates a better understanding of the

problem: thus, increasing the probability that the appropriate solution is selected.

This thesis discusses the use of a hypermedia system as the user interfa e for an

ex-crt .yr-em. The hypermedia system allowed dynamic creation and editing of the user

interface, and collected and transmitted information from the user to the expert system. The

exp-rt system, which remains tran,--rent to the user, uses this information to recommend a

solution to the problem or to determine more information is needed from the user.

Regardless, the expert system communicates these results to the hypermedia system, which

then displays them to the user.

Specifically, the prototype developed as a part of this research was designed to help

Aerospace Guidance and Metrology Center (AGMC) depot-level technicians troubleshoot

the Dual Miniature Inertial Navigation Systems (DMINS) Inertial Measurement Unit

viii

(IMU), wh;- " Is being used on fast attack submarines. Currently, DMINS technicians use

infornation from automatic test equipment (ATE) to guide their troubleshooting actions.

This ATE is driven entirely by test failures resulting from the tested IMU signals being out

of the specification limits. In addition to using these signal-, the prototype uses IMU

signals, not being validated by the current test, to detect problems before a test failure

occurs. The capability to find problems prior to a test failing, can significantly decrease the

time needed to test an IMU.

A one-day user evaluation of the prototype by an experienced DMINS technician was

conducted and documented. The user especially liked the large screen used to display

information, the mouse as an input deice, tlh- applicability of the prototype as a training

aid, and the ease at which the user interface could be modified. The prototype is nearly a

complete system, covering the majority of the DMINS trouble shooting knowledge.

ix

I. Introduction

Nearly all problems solvers based on Artificial Intelligence (Al) technology rnust

interact with humans. The interaction, or user interface, consists of queries froi the

problem solver to the human for more information about the problem, and the presentation

of information back to the human. The implementation language (i.e.. LISP, Proloc.

expert system shells, etc.) of the problem solver is chosen because it has the feature

needed to solve the problem. Often times, this language is not well suied tn impienient a

worthwhile user interface. In fact, Somers found that a number of expert ,v he!m !hV'.

includingI M.1 and Rulemaster, were too limited in their graphics capabilitils !Somer,.

1988].

In complex problem domains, such as maintenance diagnostics. it become,, e\trene1'

difficult to accurately represent the problem in words alone. Particularly with the now ice

technician, the problem should be described not only with words but also with grmphic

(i.e., pictures. diagrams, schematics, etc.) [Thomas and Clay, 1988:1431. Havirng both

text-based and graphics-based information better enables the technician to understand the

problem, thus, the technician has a higher chance of selecting the appropriate solution.

In the remainder of this chapter, a statement of the problem is given (Section 1.1), a

well as background information concerning the user interface, hypermedia, and expert

systems (Section 1.2). Section 1.3 describes the problem domain and Section 1.4 outlines

the steps involved in developing the prototype. The next two sections, Sections 1.5 and

1.6, detail the resources used and acknowledge the organizations which provided support.

Finally, Section 1.7 summarizes this chapter and provides a road map for the remainder of

this thesis.

I-I

1.1 Problem Statement.

This research project designed and prototyped a maintenance troubleshooting system

to help technicians isolate and repair faulty components. It uses a hypermedia system as

the user interface, and an expert system shell as the problem solver. The main thrust of this

research identifies the interface requirements between the hypermedia system and the expert

system shell. Based on these findings, generic interface requirements between hypermedia

systems and expert system shells, and design considerations for future hypermedia systems

and expert system shells to facilitate these interface requirements, are proposed.

1.2 Background.

In the last few years, hypermedia, the man-machine interface, and expert systems all

have been getting much deserved attention. In 1987, the first major conference devoted

entirely to hypermedia was held. "Hypertext '87" had participants from five continents and

included individuals with graphics, software engineering, philosophy, psychology,

medical, and religious backgrounds, to name a few [Smith and Weiss, 1988:817]. Past

research in the human factors area is siarting to pay off. Features which improve the man-

machine interface, such as windows, menus, and pointing devices such as the mouse, are

becoming the standard in software design. Because of the continued advancements in

computer hardware, Waterman points out that it is now practical for small computers to be

designed for and dedicated to particular expert systems [Waterman, 1986: 221]. The

following sections provide additional information on the man-machine or user interface,

hypermedia, and expert systems.

1.2.1 User Interface. The software of today is becoming increasingly more

sophisticated [Akscyn, et al., 1988:835] and often times increasingly more difficult to use.

The success of a software program relies on the ability of the human to productively use it

1-2

[Gordon, 1989:1]. This becomes an even more complicated problem realizing that there is

a continually growing number and diversification of inexperienced users [Saja, 1985:36].

While the use of menus, windows, and pointing devices such as the mouse has improved

the quality of the user interface, there is still room for more improvements. Many of these

improvements can be found in features of hypermedia systems.

1.2.2 Hypermedia. A hypermedia system organizes information into small

units, typically called nodes or frames, and allows these nodes to be interconnected or

linked together forming a network. These "links" allow a user to travel from node to node,

usually by just clicking a mouse on areas of a frame called buttons. The tern "navigate" is

used to describe the traversing of a hypermedia network. Nodes can contain both graphics

and text and are usually displayed as an entire screen or inside a window [Akscyn, et al.,

1988:820]. Ease of use, superior graphics, and multiple user capability are some of

hypermedia's desirable features. Figure 1.1 is an example of what a small hypermedia

network might look like. The nodes are represented as boxes, and can be thought of as

screens, and the links are represented as arrows.

1.2.3 Expert Systems. Expert systems have been around since the mid- to late-

70s, and have found their way into such diverse areas as medicine (MYCIN), mathematics

(MACSYMA), geology (PROSPECTOR), computer systems (XCON), and military

science (KNOBS) [Waterman, 1986:40-48]. Waterman states that an expert system is "a

computer program using knowledge to attain high levels of performance in a narrow

problem area" [Waterman, 1986:11,239]. The knowledge used by the expert system must

be collected from the human experts in the specific problem area and from other existing

resources (i.e., user manuals, schematics, databases, etc.). This knowledge must then be

coded into the expert system. To facilitate the coding process, an expert system shell, such

as CLIPS [Johnson Space Center, 19891, OPS5 [Waterman,1986:362], and Knowledge

Engineering Environment (KEE) [IntelliCorp, Inc., 1988], are usually used. Benefits of

1-3

Technical Orders
Click mouse button

on selection.

(He-icoer)

Helicopter Technical Tank Technical Orders
Orders Chck mouse buttonon selection.

Click mouse button
on selection.Mu

C Rotor Assem-by)

Frame Technical Orders Tractor Technical Orders

Part Number: TR4512A

Part Number: FROO2O Manufacturer: Company 8
Manufacturer: Company A Unit Cost: S25M

Unit Cost: S35M

Rotor Assembly Technical Gun Technica Orders
Orders

Part Number: 65678B
Part Number. PA434C Manufacturer: Company Cmanufacturer. Company a Unit Cost: SSOM

Unit Cost: $20M

Figure 1.1: Example of a Hypermedia Network

using expert systems include: lower training costs, faster problem resolution for novices,

minimization of the impact of employee turnover, and improved effectiveness of the

1-4

novices such that their effectiveness approaches that of the experts [AI Squared, Inc.,

1989].

1.2.3.1 Expert System User Interface. When expert systems first emerged,

their user interface was entirely text-based. Today, the standard interface is still text-based,

but many expert systems such as KEE [IntelliCorp, In.., 19881, GoldWorks II [Gold Hill

Computers, Inc., 1989], and S.1 [Teknowledge, Inc., 1987] allow graphics to be

incorporated into their user interface. For each of these systems, the screen layouts are

programmed using a text editor to input the code. Testing syntax of the code is

accomplished and an iterative refinement of the code is used until the graphics object

appears in the correct screen location. Figure 1.2 is an example of code needed for

GoldWorks II to display a simple menu.

(define-instance choose-sev-1 (:is popup-choose-several)
(instructions ("On a Popup-choose-several-menu,"

:return "you can make more than one selection."))
(elements (("Item 1")

("Item 2")
("Item 3")))

(x 50)
(y 50))

Figure 1.2: GoIdWorks II Code to Create a Menu

The hypermedia systems of today allow on-screen creation, positioning. and editing

of graphics, without worrying about screen coordinates, object dimensions, and command

syntax. This tremendously simplifies programming the user interface and gives the

programmer a "what you see is what you get" (WYSIWYG) approach to screen creation.

1-5

1.3 Problem Domain.

The Dual Miniature Inertial Navigation System (DMINS) has been selected as the

problem domain for this research. The DMINS is an inertial navigation system used on

fast attack submarines, oceanographic survey ships, and aircraft carriers. Depot repair for

the DMINS is conducted by the Aerospace Guidance and Metrol')gy Center (AGMC)

located at Newark AFB OH. AGMC repairs about 15 DMINS inertial measurement units

(IMU) each month; each unit requires a minimum of 70 hours to test. The test technician

is responsible for selecting appropriate tests to perform based on output from :he DMINS

automated test equipment (ATE). Using the results of the testing, the technician will

identify none, one, or more than one of the 38 shop replaceable units (SRUs) as being

faulty. Because of the complexity of the DMINS, the low number of IMUs tested each

month, and the length of the automated tests, a technician needs many years of experience

to acquire the in-depth level of knowledge required to perform efficient diagnosis and repair

of the DMINS IMU. [Rasmussen, 1988:1369]

An Air Force Institute of Technology (ART) thesis written by Capt Skinner also used

the DMINS for its problem domain [Skinner, 1988]. Capt Skinner developed a DMINS

diagnostics system that blended shallow reasoning techniques, which use empirical

knowledge, with model-based reasoning techniques, which use structural and behavioral

knowledge. Capt Skinner's system provided assistance to the technician during one phase

of the DMINS troubleshooting process. The shallow reasoning part of his research was

incorporated in the prototype developed during this research. The prototype developed

here encompasses substantially more of the total troubleshooting process.

1.4 Approach and Methodology.

This research consisted of the following phases: Knowledge Acquisition,

Hypermedia and Expert System Integration, Design and Coding, and User Evaluation. All

1-6

but the User Evaluation phase were concurrently ongoing for the majority of this project.

A general discussion of these phases follows, while Chapter IV provides a mo:e detailed

discussion:

1.4.1 Knowledge Acquisition Phase. This phase consisted of interviewing

DMINS engineers and technicians to collect knowledge of the DMINS functional

characteristics, testing environment, and current testing and troubleshooting procedures.

Multiple interviews were conducted with two of AGMC's most experienced technicians.

Since Capt Skinner concentrated on only one portion of the DMINS troubleshooting

process, emphasis was placed on capturing knowledge on the troubleshooting process as a

whole (i.e., starting when AGMC received a faulty IMU, and finishing when a faulty SRU

is determined). Decision trees representing the technicians' troubleshooting procedures

were constructed from this knowledge and later verified by the technicians. Relevant

DMINS documentation, such as Technical Orders (TOs) and "in-house" troubleshooting

help sheets supplemented the information provided by the technicians.

1.4.2 Hypermedia and Expert System Integration Phase. During this

phase, the details of how the hypermedia system and expert system would communicate

were decided. Since the hypermedia system will act as the expert system's user interface, it

will collect information from the technician about the current problem being diagnosed.

This information needs to be communicated to the expert system so that reasoning can take

place. The expert system will try to solve the problem by using the knowledge obtained

from the user by the hypermedia system. The expert system will either have enough

information to identify the faulty component or determine that more information is needed.

Regardless, the expert system must communicate these results to the hypermedia system

which, in turn, will communicate it to the user.

1-7

The hypermedia and the expert systems communicate with each other via files. Each

writes information to a file and waits for the other to read that file and respond. The expert

system writes the name of the frame to be displayed next to the user, and the hypermedia

system writes user responses to queries. Since performance was not a critical issue in

developing the prototype, using files to communicate was chosen because it was the

simplest way to implement.

1.4.3 Design and Coding Phase. This phase consisted of coding the DMINS

troubleshooting knowledge into the expert system and designing a standardized and

informative user interface using the hypermedia system. A total of 240 production rules

were created: 135 rules were created using Capt Skinner's project, and 105 rules were

created to take into account more of the DMINS troubleshooting process and to allow

interaction with the hypermedia system.

As a first step, the user interface was implemented using the text-based user interface

built into the expert system. Once the logic of the 240 rules was determined to be correct,

incorporation into hypermedia was accomplished. A hypermedia frame was created for

every rule which, either by seeking or conveying information, interacted with the user.

These same rules were then modified to reference the appropriate hypermedia frame.

Figure 1.3 displays the user interface of one rule when implemented using text-based and

hypermedia-based approaches.

The hypermedia frames were designed so that no input from the keyboard was

required. Not allowing keyboard entries eliminated the need for error checking of the

user's responses. All user inputs would be made by using a mouse and clicking on

buttons. Clicking on a button executes a small program which writes the user response to a

file. Because of the way the hypermedia and expert systems communicate with each other,

all paths through the network had to be controlled. The user's navigation privileges were

1-8

restricted for two reasons: first, to prevent the user from getting lost in the network; and

secondly, to prevent the user from clicking on a button which would convey to the expert

system either incorrect information or correct information but at the wrong time. The use

of graphics, such as schematics, tables, signal diagrams, and equipment panel diagrams,

were used on frames to provide the user with additional information.

DIAGNOSIS STAGE: MODE A ERROR CODES

The signal should look like this:

Check the resolver signal at the NCC.
IS the signal goo.?' . .. '

Enter yes or no:..................................

Check the resolver signal at the NCC
The signal is:

Example of text-based implementation. Example of hypermedia implementation.

Figure 1.3: Example of a Rule's User Interface Using Both a Text-based and

Hypermedia-based Approach

1.4.4 User Evaluation Phase. This phase consisted of a DMINS technician's

using the prototype. Numerous test cases were executed, the results of which were

compared to known results. The technician provided feedback regarding the design of the

user interface, the accuracy of the results, and the prototype's troubleshooting procedures

1-9

as a whole. The technician's response to the prototype influenced some of the findings and

recommendations documented later in this thesis (See Chapter V).

1.5 Hardware and Software.

The following hardware and software were used to develop the prototype:

Sun 3/60 workstation. This equipment was chosen because of its large screen,

speed, and availability. The computer power of this workstation will undoubtedly be

available in the personal computers of tomoufow.

Knowledge Management System (KMS). This software application is a hypermedia

system developed by Knowledge Systems. KMS was selected because it was available for

the chosen hardware suite and had the graphics capability required for the selected problem

domain of this project.

C Language Integrated Production System (CLIPS) version 4.2. This expert system

was developed by the National Aeronautics and Space Administration (NASA) Artificial

Intelligence section. CLIPS was selected because it is available for no charge to offices

within the Department of Defense and it provides an easy interface to the "C" programming

language.

C language compiler and the UNIX operating system. These tools were used to

create the communication link between KMS and CLIPS.

1.6 Other Support.

The sponsor of this thesis, WRDC/TXI, provided the funds to procure the

hypermedia system and to support travel to/from NEWARK AFB OH. They also provided

use of their computer resources.

1-10

Many interviews with DMINS technicians and engineers took place both in person

and via telephone. These interviews provided the problem domain knowledge needed to

create the prototype.

1.7 Conclusions.

Both expert systems and hypermedia systems have desirable features of their own.

Many times, a desirable feature of one will cancel a non-desirable feature of the other.

Hypermedia's ease in implementing a user interface, and expert systems' ability to capture

knowledge and solve problems, when combined, can increase the probability the problem

solver will be a success.

The remaining chapters of this thesis provide a literature review of expert systems and

hypermedia (Chapter II); describe the current DMINS testing procedures, testing

environment, and ATE configuration (Chapter III); outline the methodology used to

develop the system prototype (Chapter IV); and finally, summarize the results of this

research project (Chapter V).

1-Il

H. Review of Related Work

This chapter provides background information concerning hypermedia and Artificial

Intelligence (AI) approaches to problem solving in the diagnosis environment. Of the Al

techniques available in the diagnosis domain, emphasis will be placed on expert systems

since this research chose to implement the prototype using that technique. The importance

of the user interface to the success of a problem-solver is also stressed. First, general

information and terminology concerning hypermedia will be given. Secondly, Al

background information, concentrating on expert systems, is provided. Thirdly, a s,:ction

outlining several military-related projects is presented. This section includes current

projects which use expert systems for diagnosis. In the last section, current tools which

combine hypermedia and expert systems techniques are identified.

2.1 lypermedia.

In a 1945 article, Vannevar Bush described a microfilm based machine called the

memex, which was an extensive on-line text and graphics system. The essential feature of

the memex was its ability to tie (link) two items together [Bush, 19451. While Bush

introduced the basic ideas of modem hypermedia systems, Theodore Nelson in 1965

actually used the term "hypertext" first. [Nelson, 1965]. The term "hypertext" is used to

describe hypermedia systems focusing mainly on textual information [Nielson, 1989].

Halasz gives this definition of hypermedia:

Hypermedia is a style of building systems for information
representation and management around a network of multi-media nodes
connected together by typed links. [Halasz, 1988:836]

These nodes, sometimes called frames [Akscyn and others, 1988:3], are usually used to

represent a single idea or concept [Conklin, 1987:35] and contain a combination of text,

IH-I

graphics, and buttons. Buttons are textual or graphical regions of the node which, when

activated (usually by the clicking of a mouse button), perform one or many functions. For

example, clicking a button could cause another node to be displayed, a digitized audio

recording to be played, an animation sequence to be shown, and a computer program to be

executed [Conklin, 1987:17-18]. Looking back to Figure 1.1, the top node, entitled

"Technical Orders", has two buttons each of which is linked to another node. Clicking on

the "Tank" button will display the "Tank Technical Orders" node. Clicking on the

"Helicopter" button will cause the "Helicopter Technical Orders" node to be displayed next.

Conklin calls the collection of all the nodes in a hypermedia network a "hyperdocurnent"

[Conklin, 1987:19]. One of the main differences between a hyperdocument and a

conventional paper document is that the hyperdocument is designed to be viewed

nonlinearly. Smith and Weiss provide this excellent analogy:

Each node (of a hypermedia network) can be thought of as analogous to
a short section of an encyclopedia article or perhaps a graphic image
with a brief explanation. The links join these sections to one another to
form an article as a whole and the articles to form an encyclopedia.
[Smith and Weiss, 1988:817]

The nonlinearity of a hyperdocument allows the reader to choose the sequence in which the

information is presented [Charney, 1987:111]. While the reader of a conventional paper

document could choose the sequence in which the pages are read, what was read might not

make sense or mean what the author intended. A good source of more information on

hypermedia is Conklin's survey paper entitled "Hypertext: An Introduction and Survey"

[Conklin, 1987]. '1 he fulluwing paragraph defines other hypermedia terms.

The term "navigate" is used to describe the traversing from node to node in a

hypermedia network. To aid navigation, some hypermedia systems, such as NoteCards,

Intermedia, and gIBIS, include a "browser" node which displays a structural or tree

diagram of the hypermedia network [Trigg and Irish, 1987:92]. Using the browser node,

11-2

the user can select the next node to be displayed or even delete and create nodes [Halasz.

1988:838].

Hypermedia systems have been used to aid software eagineering (Neptune [Delisle

and Schwartz, 19S61), to create paper and electronic documents (Writing Environment

[Smith, 1986]), to develop a tutorial and diagnostics system for the Space Shuttle 1O'Reilly

and others, 1988], and to demonstrate the concept of a hypertext-based maintenance

technical manual [Stone and others, 1982]. Some of the more important hypermedia

applications are described in the next section.

2.1.1 Current Hypermedia Systems. This section describes four hypermedia

systems: ZOG/Knowledge Management System (KMS), Intermedia. NoteCards, and

HyperCard. Many other system are available today for use on personal computers and

computer workstations.

ZOG/KMS. ZOG was developed in 1972 at Carnegie-Mellon University. It

consisted of a menu-driven interface and allowed sharing of data. In 1980, ZOG was used

as a management system aboard the USS Carl Vinson [Akscyn and others, 1988:8211.

ZOG. probably the largest and most thoroughly tested hypermedia system, has evolved

into the hypermedia application called KMS. ZOG/KMS allows only two nodes to be

viewed at a time and does not include a browser node lConklin, 1987:26). A "general-

purpose, block-structured programming language" is included to "extend the functionality

of KMS" (Knowledge Systems, 1989].

IntQrmedia. This system was developed at Brown University and is the result of two

decades of work. It is being developed as an organizational tool to help professors present

their lesson material and as an interactive tool for "students to study the lesson material and

add their own annotations and reports" [Conklin, 1987:291. Inter-media consists of a text

11-3

editor, graphics editor, timeline editor, and various other editors. Documents and drawings

created with these editors can be linked together to form a hypermedia network [Beeman

and others, 1987:7 1].

Note(ards. This application was developed at Xerox Palo Alto Research Center to

aid "authors, researchers, designers, and other intellectual laborers" with their ideas. It is

fully integrated with a LISP programming environment which allows it to be integrated into

other LISP-based programs [Halasc, 1988:839]. Multiple nodes, called "notecards". can

be displayed at one time and be of different sizes. NoteCards supports typed nodes w, hich

allows nodes to be of a certain type (i.e., text, sketch, graph, etc.) [Trigg and Irish.

1987:911.

HyperCard. This system, developed by Apple Computer, exclusively runs on Apple

Macintosh computers. HyperCard features include user-friendly drawing tools, the ability

to import graphics files, and its own programming language (HyperTalk . lfperCard

does not provide different sized nodes or linking within a field of text. [Apple Computer,

Inc., 1987]

2.2 Al-Based Problem Solving Strategies.

The term "artificial intelligence" originated in 1956 at a conference held at DartmouLth

College [Schoen and Sykes, 1987:21 and, according to Winston, can be defined as "the

study of ideas which enable computers to do the things that make people seem intelligent

[Winston, 1977:1]. But it was not until DENDRAL in the mid-1960s and MYCIN in !he

mid-1970s that Al applications were considered successful. DENDRAL assists chemists in

analyzing spectroscopic data, while MYCIN helps physicians in the diagnosis and

treatment of meningitis and bacteremia infections [Harmon and King. l9 5:15,1341.

Besides medical and chemical diagnosis, Al-based systems have since been used iII

11-4

geological exploration, management job shop scheduling, computer configuration, job

training, and numerous other areas [Blais, et al., 1984:7]. Three popular problem solving

strategies used in Al-based diagnostic systems are decision trees, production systems, and

model-based reasoning. Each of these will be discussed 1,, the following paragraphs.

Decision trees, sometimes called faul, trees, are a simple and efficient way to write

down the sequence of tests and conclusions needed to guide a diagnosis [Davis and

Hamscher, 1988:305]. They are made up of several sequences of events, each called a

path. Each path systematically leads to a conclusion. For example, a path could start with

an error message displayed on an ATE terminal and conclude with a recommended repair

action. A disadvantage in this strategy is that different paths can lead to the same

conclusion. For complex systems, this duplication of data can prove to be too cumbersome

to manage [O'Reilly, et al., 1988:470]. Also, a small change in the device could cause a

major restructuring of the paths [Davis and Hamscher, 1988:305]. The decision tree

strategy is implemented in many maintenance manuals in the Air Force [Davis and others,

1983:7]. Production systems are an alternative approach.

Production or rule-based systems represent knowledge in the form of "condition-

action" pairs [Cohen, 1982:157] and are called expert systems. One "condition-action" pair

is called a production rule or simply a rule. Figure 2.1 is an example of a rule written in the

expert system called ROSIE. Notice the "condition" or "if' part and the "action" or "then"

part of the rule.

Waterman defines an expert system as "a computer program that uses expert

knowledge to attain high levels of performance in a narrow problem area" [Waterman,

1986:390]. Two popular expert systems are MACSYMA, which is used for symbolic

mathematics; and PROSPECTOR, which is used to identify mineral deposits [Hayes-Roth

and others, 1983:9-10]. The knowledge used in these expert systems were gathered from

an expert in the particivlqr problem domain using knowledge engineering techniques

11-5

[Waterman, 1986:152-1611. This type of knowledge is called empirical because it is

derived solely from the expert's experience. Much of this knowledge is also considered to

be heuristic in nature (i.e., rules of thumb vice algorithmic) because many times the

problem is too complex too be solved optimally [Harmon and others, 1988]. The

knowledge is then converted into production rules.

If the plaintiff did receive an eye injury

and there was just one eye that was injured

and the treatment for the eye did require surgery

and the recovery from the injury was almost complete

and visual acuity was slightly reduced by the injury

and the condition is fixed,

then increase the injury trauma factor by $10,000.

Figure 2.1: The Representation of Legal Heuristics for Product Liability written using
ROSIE [Hayes-Roth, 1985:922]

An expert system's architecture has three main components. A data store component,

also called working memory or data memory, contains facts specifically pertaining to the

current problem being diagnosed. Another component is the production rules which

represent the domain-knowledge captured during the knowledge engineering sessions. The

final component is the inference engine. The inference engine determines which rules to

execute based on the facts in working memory. Since rules only execute based on the facts

which are known to be true (i.e., found in the working memory), there is no procedural

order implied by the rules. Because of the lack of procedural order to the rules, expert

systems are said to be data-driven programs. [Brownston and others, 1985:6-71

11-6

For complex systems, the time required to obtain knowledge can be lengthy. As the

number of production rules grows, it becomes more difficult to understand the interactions

between the rules, to debug them, and to control their behavior [Fikes and Kehler,

1985:912]. Another disadvantage of using this type of system is that it cannot diagnose

problems which have not occurred previously, since the experience of t ,e experts is used to

make its decisions. Model-based reasoning techniques do not have this problem.

In the last few years, model-based reasoning techniques have become popular,

especially in the diagnosis area. Model-based reasoning tries to represent the structure and

behavior of a given device. Once the model is correct, discrepancies between the model

and the device can be attributed to the problems with the device. These discrepancies are

"clues to the location and character of the faults" in the device [Davis and Hamscher,

1988:297-298]. An advantage with this strategy is that it allows you "to begil, reasoning

about a system as soon as its structure and behavioral description is available" [Davis and

Hamscher, 1988:344].

The above-mentioned strategies have been used in problem-solvers which provide

assistance in diagnosis, planning, tutoring, and various other environments. Each of these

problem-solvers require interaction with a human to successfully solve the problem at

hand.

2.2.1 User Interfaces of Current Expert System Tools. Current expert

system tools, such as GoldWorks II, KEE, and Nexpert Object, manufactured by Neuron

Data Corp., have excellent user interface capabilities built into them. Graphical user

interfaces can be implemented using each system's own programming language or by

interfacing with externally written code. Most of these languages have a syntax,

resembling that of LISP, giving them the capability to add graphical objccts like menus,

windows, meters, and graphs. GoldWorks II offers two ways to create a user interlace:

11-7

one for the LISP programmer, for highly sophisticated interfaces, and another for a menu-

based interface [Gold Hill Computers, Inc., 1989]. Other expert systems, such as CLIPS

and S. 1, must interface with externally written code to display graphical objects, otherwise

the user interface is entirely textual.

2.3 Related Military Projects.

There are many expert systems being developed in the military today and most seem

to have a common implementation feature: interfacing of the expert system with high-level

language code. This code is used to write the user interface of the diagnostic system. The

following paragraphs describe five of the many military-related diagnostics systems in

development.

Central Integrated Test System (CITS) Expert Parameter Set (CEPS). This system

applies expert system techniques to the B-lB recorded flight parameters. Rockwell

International, Boeing Military Aircraft Company, and Eaton Corporation are all developing

portions of the CEPS which includes both on and off-aircraft equipment. The expert

system shell called COPERNICUS is being interfaced with "C" language code to

implement the user interface. [McArthur, 1989]

Expert Missile Maintenance Aid (EMMA). This system is using expert system

techniques to aid the depot level technician in repairing the GBU-15 missile . It is being

developed by Rockwell International Autonetics Sensors and Aircraft Systems Division and

uses the M.1 expert system shell and "C" language routines to display graphics. It uses

data available from the current test equipment to help diagnose faulty components. One

problem experienced by Rockwell was dealing with and getting around the standard user

text-based interface built into M. 1. [Davis and Huebner, 1989:1, 21, 44]

11-8

Intezrated Maintenance Information System (IMIS). This system is being developed

by the Air Force Human Resources Laboratory (AFHRL) located at Wright-Patterson AFB

OH. IMIS displays technical order information and diagnostic aids to the maintenance

technician using a portable computer which is carried onto the flight line and connected to

the aircraft. The user interface has been a very high concern of IMIS and many studies by

AFHRL have been done concerning this. Code written in "C" implements both the

diagnostic decision algorithm and the graphics routines. Future versions of IMIS will

include integrating SMALLTALK-80 with an expert system. [Gunning, 1989]

Intelli2ent Tutorial/Diagnostic System for the Space Shuttle Main Engine Controller

(SSMEC) Lab. This system, developed by Rockwell International Rocketdyne Division,

uses hypermedia (HyperCard) to implement both the user interface and the expert system

shell. The system included sophisticated graphics, animation, and sound, and required

about 50% of the effort necessary to develop an identical system written in Prolog.

HyperTalk, the programming language of HyperCard, was used to implement the

backward chaining of the expert system. [O'Reilly and others, 19881

Power Management and Distribution System (PMAD). This system prototype was

designed to aid astronauts aboard a space station to diagnose PMAD system faults. The

user interface is implemented using "C" routines, a window manager program which is

built into the color workstation, and a low-level graphics package. The expert system tool

(KEE) remains transparent to the user. The graphics front end and the expert system

communicate via a network protocol. [Hester, 1988]

2.4 Related Tools.

This bection outlines three tools which combine expert system techniques with

hypermedia techniques. People are beginning to see the advantages in merging the benefits

11-9

of hy ,ermedia with those of expert systems as tools similar to these are being announced,

exaggeratedly, almost daily. One application is a hypermedia system which has added

expert system-like features, and two applications are expert systems which have added

hypermedia features. The information provided for the first tool was taken from a review

found in a computer magazine, while the information concerning the two other tools was

taken from company brochures.

HyperX. This tool, published by Millenium Software, incorporates an expert system

shell in a hypernedia environment (HyperCard). It allows both forward and backward

chaining and nrovides an excellent explanation facility. All the available graphics tools of

HyperCard can be used to create screens in HyperX. Because programs written in HyperX

are interpreted, execution is extremely slow. [Rasmus, 1989:259-260]

Intelligent Diagnostic Expert Assistant (IDEA). This system, distributed by Al

Squared, Inc., uses model-based reasoning techniques to solve diagnostics problems.

IDEA is PC-based and uses hypermedia techniques to implement its help facility. [A!

Squared, Inc., 1989]

KnowledgePro. This PC-based system is distributed by Knowledge Garden Inc.,

and "combines a high-level, object oriented programming language with hypertext and

expert systems technology" [Knowledge Gardens, 1989:2].

In the following chapter, the problem domain of this research, DMINS, is described.

Details of the troubleshooting procedures are given, as well as background and test

equipment information. Then Chapter 4 documents the development of the prototype

which is designed to aid the DMINS technician during a troubleshooting session. As is the

case with the three tools above, the prototype developed merges both hypermedia and

expert system techniques.

II-10

I1. Dual Miniature Inertial Navigation System (DMINS)

The purpose of this chapter is to familiarize the reader with the Dual Miniature Inertial

Navigation System and its current testing procedures, testing environment, and

troubleshooting procedures. The information contained within this chapter is the result of

knowledge captured during numerous phone conversations with DMINS techricians and

engineers, during several visits to Newark AFB, and while reading assorted types of

written documentation, such as technical orders and in-house troubleshooting help sheets.

In Section 3.1, DMINS background information is given. Section 3.2 describes the

DMINS testing and troubleshooting procedures. Section 3.3 describes the scope of the

troubleshooti.g process implemented by this project. The final section of this chapter,

Section 3.4, highlights several observations which arose from interfacing with the DMINS

technicians.

3.1 Background.

The DMINS, manufactured by Rockwell International Corporation, is being used on

fast attack submarines, oceanographic survey ships, and aircraft carriers; DMINS has been

operational since the mid-70s. The DMINS consists of two Inertial Measuring Units

(IMUs), which calculate the ship's attitude, heading, velocity, and position; two Blower

Assemblies which cool the IMU; two Electric Mounting Bases, which maintain correct

alignment between the IMU and the ship's surface; and the Navigation Control Console

(NCC), which provides the output from the IMU to the other computers on the ship. The

IMU is considered a Line Replaceable Unit (LRU); therefore, no maintenance, besides

removal and replacement, is done at sea.

The Aerospace Guidance and Metrology Center (AGMC), located at Newark AFB

OH, is the repair depot for all faulty IMUs. At Newark AFB, the technicians use

IJI-1

automated test equipment (ATE) to troubleshoot faults in the IMU. Because the minimum

test time is 70 hours per IMU, only approximately 15 IMUs are repaired each month. For

this reason, technicians require many years to gain the knowledge and experience required

to troubleshoot in an efficient manner.

The ATE is driven by a test controller, an IBM 1800 computer, and a test program,

written in assembly language. The test controller is connected to two NCCs, which, in

turn, are connected with two IMUs. One of the NCCs is also connected to an IMU

Interconnect Console (IMUIC), which is used during Mode B testing (discussed later). The

IMUIC provides the capability for performing malfunction detection and isolation, and

functional testing of the IMU. The IMUIC allows technicians to verify test point readings

at any point in the testing process. The test program controls the communication between

the test controller and the NCC, controls the execution order of the tests, and sets up test

scenarios. Figure 3.1 diagrams the current ATE configuration.

3.2 DMINS Testing and Troubleshooting Procedures.

An IMU received from the field will undergo two sets of diagnostics tests: Mode A,

which checks system performance; and Mode B, which provides automatic fault isolation

testing. During both the Mode A and Mode B tests (discussed below), the IMU is mounted

on a stationary pier. When an IMU arrives at AGMC, it will undergo Mode B testing first.

After successful Mode B testing, Mode A testing of the IMU begins. If the results of both

the Mode A and the Mode B tests indicate that the IMU is functioning properly, a Scorsby

Test will be run. A Scorsby test is a navigation performance test in which the IMU is

mounted on a moveable platform to simulate the field conditions under which the system

faile i. If an IMU successfully completes the Scorsby test, it is determined to be operating

properly and is returned to the field.1

111-2

IBM 1800

IUIMU M

Figure 3.1: DMINS ATE Configuration

Because of the lengthy test times and the relatively small number of IMUs processed

by AGMC each month (about 15), a technician's experience is his/her most valuable

troubleshooting aid. Using experience, technical manuals, and ATE printouts, a technician

determines which of DMINS's 38 Shop Replaceable Units (see Appendix A) should be

repaired. The ATE printouts contain three types of information which are used during

troubleshooting: signal readings, error messages (see Appendix B), and calibration

parameter readings (see Appendix C). Signal readings are used only during Mode B, while

calibration parameter readings are used exclusively in Mode A. Error messages occur and

are used during both Mode A and Mode B testing.

3.2.1 Mode B Testing. The initial testing of an IMU is performed during Mode

B. Mode B consists of 22 tests, each of which can have sub-tests. See Appendix D for a

1 Sometimes called a retest okay (RETOK).

111-3

list and description of the first nine tests. Mode B identifies "hard" or gross failures and

tests the functionality of the IMU. Gross failures occur when IMU-generatect signals are

not within the specification limits. The Mode B tests verify correct operation of IMU

functions such as correct direct current power supply, correct alternating current power

supplies, correct gyro-hot and gyro-cold alarm conditions, proper built-in test equipment

operation, and correct velocity meter acceleration crossover. The 22 tests automatically

execute one after the other as long as no failures have occurred. When an IMU

successfully completes Mode B testing, Mode A testing will begin. A Mode B run without

any of the tests failing will take approximately 4.5 hours.

3.2.1.1 Mode B Troubleshooting Procedures. Output from the ATE

consists of a printout for each Mode B test. The printout lists the signal which wcu% L,.3ted,

the specification limits of that signal, and the status of the signal compared with the

specification (i.e., GO or NOGO). Mode B tests are performed with the IMU installed at

the test station utilizing the IMUIC. Because the test times of Mode B tests are relatively

short compared to Mode A tests, when a Mode B tests fails, the technician will run the

same test again. If the test fails again, the technician, using the IMUIC, manually verifies

the test point checked during the test to verify that the test equipment is operating properly.

If the test point is in fact not within the specification limits, the technician then sorts

through various technical manuals in an attempt to identify the failed SRU. Tracking down

the origin of the test point signal and the components or modules which could have caused

the bad signal is the portion of Mode B troubleshooting in which experience plays an

important role. Based on the schematics and the technician's experience, a SRU is

determined to be faulty.

During a test, the ATE can also generate error codes. Seventeen of the 62 possible

error codes either cause the test to cease execution or require the technician to manually stop

the test. The technician will then consult the schematics to determine the SRU which is

111-4

causing the error message. Technicians disregard the error codes which do not stop a test

from executing, ant wait tor the entire test to either pass or fail.

3.2.2 Mode A Testing. Mode A testing is accomplished only after an IMU

successfully completes Mode B testing. Mode A consists of a sequence of five tests which

verify that an IMU's performance meets the specification over long periods of time.

Performance failures, like those found during Mode A tests, are typically called "soft"

failures. The first three tests calibrate IMU components in preparation for the final two

tests which perform navigation tests lasting a minimum of 30 hours. Mode A testing with

no failures will take approximately 66 hours. The five Mode A tests are the following:

Shim Calibration (Shim-Cal). An hour-long test which verifies correct performance

of the X velocity meter (X-VM) and the Y velocity meter (Y-VM). This test can be run a

maximum of three times to allow failed parameters to correct themselves before beginning

the next test.

Gyro Calibration (Gyro-Cal). A six hour test which verifies proper XY gyroscope

(XY-Gyro) and YZ gyroscope (YZ-Gyro) performance. This test can be run a maximum

of three times to allow failed parameters to correct tiliemselves before beginning the next

test.

Master Heading. Tests the ability of the IMU to perform a self alignment. This is not

a timed test and does not complete running until a technician initiates termination of the test.

A typical run time for a successful Master Heading is four hours.

Navigation Alignment (Nav-Alian). A 16 hour test that verifies an IMUs ability to

navigate.

111-5

Navigation Performance (Nay). A 30 hour test of an IMU's navigation performance

which can be run a maximum of three times to allow the IMU to try to correct itself. After

a successful Nay test, the IMU is delivered back to the field.

3.2.2.1 Mode A Trou!.leshooting Procedures. Two circumstances initiate

troubleshooting an IMU during Mode A testing: calibration parameter readings and error

codes. Calibration parameters electromagnetically adjust some of the components of the

IMU to improve its performance and keep it operating within the specification. The values

of these parameters are checked to see if they are within certain tolerance limits.

The behavior of calibration paramaeters during and at the completion of each test also

provides valuable troubleshooting information. This is true whether the IMU passes or

fails the test. Experienced technicians not only care about the value of the parameters, but

also about how those parameters vary from one test to the next. Erratic or drastic changes

in a parameter from one test to the next, even if the value is within the specification, can be

an indicator of a faulty SRU. The calibration parameters of a properly functioning IMU

"fine tune" or continually improve themselves from one test to the next.

Troubleshooting error messa: es during Mode A testing are identical to those during

Mode B except that calibration parameter information is also available. Both error message

and calibration parameter trouble hooting techniques are contained in the prototype, which

is discussed in Chapter 4.

3.3 Scope of the Problem Domain.

DMINS technicians troubleshoot IMUs during both Mode A and Mode B testing, and

several sources of information are available to help them. The expert system developed by

Capt Skinner as part of his thesis [Skinner, 1988] incorporated only one type of

troubleshooting aid available to the DMINS technician: error messages. It also

111-6

encompassed only Mode A testing. This thesis effort builds onto Capt Skinner's project by

adding calibration parameter troubleshooting to Mode A. Also, a limited Mode B

troubleshooting was added. The Mode B portion does not include error message

troubleshooting and only includes the first nine Mode B tests. Mode B knowledge was

coded entirely in hypermedia while the Mode 11 calibration parameter knowledge was coded

in hypermedia and in the expert system. The intended result is a prototype which mirrors

the actual testing and troubleshooting process used by experienced DMINS technicians.

3.4 Observations.

The potential benefits of using an expert system at AGMC became evident early in the

knowledge engineering sessions. I talked to two of AGMC's most experienced

technicians. These technicians, who now both occupy supervisory positions, kept saying

that they wished the operational technicians would do more of the type of troubleshooting

"they would do." According to the these experienced technicians, most technicians do not

use the calibration parameter data as much as they should. If a test passes, even though the

calibration parameters provide evidence of a possible problem, these less experienced

technicians would continue testing. Adopting the troubleshooting techniques of the more

experienced technicians could benefit AGMC tbenundously. Faulty SRUs couid be found

earlier in the testing process, and more IMUs could be processed each month. I have tried

to represent "their" way of troubleshooting in the prototype developed during this project.

Some of this knowledge is represented in a general form throughout this thesis; a more

detailed representation can be found in the hypermedia and expert system cod: (see

Appendix E). The next chapter details the development of the prototype.

111-7

IV. Prototype Development

In this chapter, the development of the DMINS prototype is documented and

discussed. This prototype is a logical "next step" to the p-ototype developed during Capt

Skinner's research. It encompasses significantly more of i.,e DMINS diagnosis process as

both calibration parameter diagnosis and Mode B troubleshooting are added (see Chapter

3), while at he same time, providing a simpler and more informative user interface. This

chapter is organized in the same sequence as is the testing of a DMINS IMU (see Chapter

3). Section 4.1 describes the methodology of developing the Mode B portion of the

prototype, and Section 4.2 outlines the Mode A part. Both the Mode B and Mode A

sections are arranged into subsections corresponding to the methodology outlined in

Section 1.4. Section 4.3 describes the integration of the Mode B development with the

Mode A development producing the prototype. The next section, Section 4.4, informs the

reader of changes made to some of the hypermedia system's basic capabilities. Lastly,

Section 4.5 concentrates on problems which occurred due to the software tools used.

4.1 Development of Mode B.

The Mode B part of the prototype was developed using three of the phases described

in Section 1.4: Knowledge Acquisition, Design and Coding, and User Evaluation.

Because of circumstances discussed in Section 4.1.2 below, the Hypermedia and Expert

System Integration Phase was not used during Mode B development. The mechanics

involved with each of these phases are discussed presently.

4.1.1 Knowledge Acquisition Phase. Because Capt Skinner's project did

not include Mode B testing, the only source of knowledge was the DMINS technicians and

engineers. The technicians and engineers I talked with were very interested in

IV-1

incorporating Mode B because the majority of their troubleshooting is conducting during

this phase of testing. Numerous interviews were conducted with Jim Neri, one of the most

experienced DMINS technicians, and Capt Steve Rasmussen, an engineer, concerning

Mode B testing and troubleshooting procedures. Jim Neri was also involved with Capt

Skinner's research and was eager to get started.

The interviews consisted of performing a "walk through" of the first nine Mode B

tests and their associated subtests, documenting the specific troubleshooting procedures for

each test. When I arrived at the start of the first interview, Jim Nedi had already started a

chart designed for organizing this troubleshooting information. Mr Neri is in the process

of completing this chart to include all 22 Mode B tests. Table 4.1 is an excerpt from that

chart which includes test B6.0 information. Each test verifies that one test point signal is

within the specification limits. The "Action" column of the chart describes the procedures

to follow if the signal is not within those limits. Refer to Section 3.2.1.1 for the Mode B

troubleshooting procedures which are common to each test.

Table 4.1: Excerpt From Mode B Troubleshooting Chart

Test Title Test Pt Specification Action

B6.1 XY Gyro Speed Control Bite 18 3.5 to 6 VDC R&R AR1, then Al.

B6.2 YZ Gyro Speed Control Bite 19 3.5 to 6 VDC R&R AR2, then A2.

B6.3 400 Hz Bite 93 2 to 6 VDC Place PS7 on extender.
Observe 17.8-32.2 VRMS.
If GO R&R PS7.
If NOGO R&R PS8.

B6.4 Azimuth Overrate Bite 94 5 to 6.5 VDC R&R A7.

B6.5 Servo Disable Bite 21 3.5 to 4.5 VDC R&R AR7, then A7 or PST.

B6.6 Free Run Bite 17 5 to 7 VDC R&R PS7.

IV-2

4.1.2 Hypermedia and Expert System Integration Phase. As the Mode

B chart referenced in the previous section was being created, we realized that the

knowledge had a very regular structure. The "Action" column of the chart usually involved

only one step: recommending that a component or module be removed and replaced. Very

few tests require multiple actions (i.e., checking other test points) before a faulty

component or module can be diagnosed. Because the Mode B troubleshooting knowledge

is procedural in nature, it requires little reasoning about possible solutions, and because the

overall size of the Mode B portion of the prototype was relatively small, a decision was

made to implement Mode B troubleshooting procedures using only hypermedia.

Although an expert system could have been used to encode this knowledge, it would

have been trivial since each rule would have contained only one condition and only one

action (see Section 2.2). Also, each of the conditions would be unique to one rule. It

would be like using an expert system to implement each and every path of a decision tree;

hence, defeating the nonprocedural execution feature of an expert system. On the other

hand, hypermedia can implement decision trees quite easily, using links between frames as

paths between decision points. Consequently, the expert system is not used when Mode B

troubleshooting is being performed using the prototype.

4.1.3 Design and Coding Phase. The chart mentioned in Section 4.1.1 and

the general troubleshooting instructions mentioned in Section 3.2.1.1 were used to create

hypermedia frames for tests B1.0 through B9.0. Using the information found in these

sections, the troubleshooting procedures for test B.6.1 can be represented as shown in

Figure 4.1. Everything contained in a single shaded area is included in one hypermedia

frame. In this case, six frames were created for test B6.1. Frames contain queries to the

user for more information. Additional information was added to each frame to help the

user answer the query. A user responds to a query by clicking a mouse over the button

which identifies the correct status of the IMU characteristic (i.e., signal reading, velocity

IV-3

direction, etc.) in question. Clicking a button would cause the frame which is linked to that

button to be displayed next. This new frame would either contain another query or identify

the faulty component or module. Appendix F contains the frames a technician would see

when troubleshooting Mode B test B6.1 and arriving at the conclusion that the ARI module

should be replaced.

Did B6.1 pass this time?

Yes No

Continue Mode B testing Manually verify test point 18

Does the signal meet the spec?

Yes No

IConsult Test Engineer. R&RAR1, then Al
Test equipment may be
faulty.

Figure 4. 1: Mode B Test B6.1I Troubleshooting Procedures and Corresponding
Hypermedia Frames (Shaded Areas)

WV-4

Figure 4.1 would be identical for each Mode B test except that different test points

will be checked and, if the test point signal does not meet the specification, different

procedures will be carried out. As stated previously, these procedures usually recommend

that a module or component should be replaced (as is the case with B6. 1). Not as often,

these procedures will have other test points checked before a faulty module is determined

(see test B6.3 in Table 4.1).

4.1.4 User Evaluation Phase. A DMINS technician used the prototype

during several simulated Mode B troubleshooting sessions. He found the system

extremely easy to use and thought it would be an excellent training aid. He particularly

liked that each test had a panel diagram, a technical orders page reference, and a

specification reading, all of which were displayed on one hypermedia frame. He

recommended that the prototype be updated to include the remaining Mode B tests.

4.1.5 Observations and Conclusions. Much of the total troubleshooting

time of a DMINS technician is exhausted during Mode B. This time is predominantly spent

looking at schematics, tracing signals to determine which module or component might have

caused the bad signal reading. The chart developed during this thesis organizes the results

of the time spent looking at the schematics and various other documentation into a single

document. The chart alone, once completed, will be an invaluable troubleshooting tool and

training aid for the DMINS technicians. The Mode B portion of the prototype encoded this

chart into a hypermedia system. The advantages of hypermedia over the paper chart

include facilitating the ability to contain graphics, the ability to retrieve information quickly,

and much improved human factors. While a paper chart usually contains information

extraneous to the current problem, such as information concerning other tests, a

hypermedia frame can be designed to contain information specific only to the current

IV-5

situation. Also, a hypermedia system is more easily modified as troubleshooting

knowledge changes.

As previously mentioned, a hypermedia-only implementation was selected because

Mode B troubleshooting knowledge does not lend itself to an expert system

implementation. While this simplified the prototype development immensely, potential

problems could surface later. Maintenance of large hypermedia networks can be extremely

difficult [Conklin, 1987:39]. A hypermedia network is modified by traversing the

network, adding and deleting frames, changing frames, and creating, changing, and

deleting links along the way. Because links are modified, it is possible to continually

generate unused frames (i.e., frames which are not linked to other frames). Because

changes to the Mode B troubleshooting procedures will not occur very often and that the

network is relatively small (less than 300 frames), it is doubtful this will happen in the case

of the prototype. Another problem with hypermedia is that the logic embedded within the

itetwork can not be printed out like program code can be; therefore, the network must be

traversed in order to understand its logic.

The Mode B portion of the prototype only aided a technician when a test failed. As

mentioned in Section 3.2.1.1, error messages are also used for troubleshooting.

Enhancements to this prototype should include error message troubleshooting and the

remaining Mode B tests (B10 through B22). Mode A development did include error

message troubleshooting and is discussed next.

4.2 Development of Mode A.

The Mode A part of the prototype was developed using all of the phases described in

Section 1.4: Knowledge Acquisition, Hypermedia and Expert System Integration, Design

and Coding, and User Evaluation. An important feature is that both error message and

calibration parameter troubleshooting were incorporated. This feature allows the prototype

IV-6

to resemble actual Mode A troubleshooting procedures. In contrast to the Mode B

knowledge, the calibration parameter knowledge lended itself to an expert system

representation. Therefore, development included both the hypermedia system and the

expert system. Communication between these two systems was accomplished using

shared data files.

The following sections describe the phases of development in detail. Section 4.2.1

outlines the Knowledge Acquisition Phase and the sources of information. Emphasis

during this phase was placed on acquiring calibration parameter troubleshooting

information. Section 4.2.2 reccunts the Hypermedia and Expert System Integration Phase

and details the interprocess communication (IPC) features of the prototype. The Design

and Coding Phase of the Mode A development is outlined in Section 4.2.3. The next two

sections, Sections 4.2.4 and 4.2.5, document the user's evaluation of the prototype and

discuss observations and benefits of the Mode A part of the prototype.

4.2.1 Knowledge Acquisition Phase. The purpose of this phase was to

collect enough accurate information to begin design and coding. Two main sources of

knowledge existed for Mode A troubleshooting procedures: DMINS technicians and Capt

Skinner's expert system. Capt Skinner's expert system was used as the main source for

gathering knowledge concerning troubleshooting error messages. Capt Skinner's project,

written using the S.1 expert system shell, recommended appropriate troubleshooting

procedures to diagnose faults in an IMU when one of the 62 error messages occurred. It

was learned during one of my knowledge engineering sessions that only 17 of the 62 error

messages actually require troubleshooting; the remainder can be ignored because they do

not provide enough information to make a decision. This project assumed (i.e., did not

verify with the DMINS technicians) that Capt Skinner's production rules concerning those

17 error messages were correct. The majority of time interviewing technicians was spent

discussing calibration parameter troubleshooting.

IV-7

During the interviews with the technicians, Mode A ATE printouts were reviewed to

determine how and when the calibration parameters were used, or should have been used

by the technician during troubleshooting. In contrast to the Mode B knowledge and the

error message knowledge, the calibration parameter knowledge was much more

sophisticated (i.e., more than one characteristic of the IMU being tested contributed to

reasoning about the problem). Troubleshooting using the calibration parameters is also

more individualistic and depends on personal experience and training. When

troubleshooting using the calibration parameters, not only is the the value of each parameter

observed, but also the behavior of each parameter from one test to the next is observed.

Since parameter behavior does not cause a test to fail (the parameter's value does this),

behavior can even be ignored by the technician. Noticing a parameter's abnormal behavior

as early in testing as possible could avoid that same parameter's causing a test failure, many

hours later. Also, knowing how close a parameter is to the specification limit is important.

For example, if a parameter has an excellent value on one test run, and is extremely close to

the specification limit on the next test run, this would indicate a problem with the IMU even

though the test passed. The CLIPS code listed in Appendix E documents this type of

reasoning in more detail.

Since technicians use both error messages and calibration parameters while

troubleshooting during Mode A, information on how and when each is used was also

obtained. Because error messages may occur at any time during a test and calibration

parameter readings are available during a test, the technician spends most of the time

observing parameter readings and behavior. If one of the 17 error messages which

requires troubleshooting occurs (see Appendix B), troubleshooting using the error message

begins. Otherwise, troubleshooting is accomplished using the calibration parameter

information and test results.

IV-8

Many notes were taken during my interviews and phone conversations with the

technicians. These notes were converted into diagrams represented the troubleshooting

procedures of the five Mode A tests. These diagrams were then validated by two DMINS

technicin7" before the design and coding of the prototype began.

4.2.2 Hypermedia and Expert System Integration Phase. This phase

consisted of implementing the interprocess communication (IPC) between the hypermedia

system and the expert system. The IPC between KMS, the hypermedia system, and

CLIPS, the expert system, was accomplished using four files. 1 Two of the files are data

files and contain the information that one process wants to relay to the other. The other two

files are used as semaphores [Silberschatz and Peterson, 1988:95-101], ensuring that only

one process is accessing (reading or writing) a data file at a time. Table 4.2 lists each of the

four files and their function.

Table 4.2: Interprocess Communication Files and Their Function

File Name Function

kmsinfo Written by KMS, contains user response to queries.

clipsinfo Written by CLIPS, contains frame name to display next.

okkms Written by CLIPS, a semaphore signifying that the clipsinfo file is
ready to be read by KMS.

oksclips Written by KMS, a semaphore signifying that the kmsinfo file is
ready to be read by CLIPS.

The IPC implementation can be described textually by the following two

characteristics and graphically by Figure 4.2:

1 While there are more efficient forms of IPC, KMS does not support them.

IV-9

CHARACTERISTIC 1: Oiily one of the two systems is in control at a time.

This system reads in the applicable data file and begins executing. Control ends when

information is written to the applicable data file. When CLIPS is in control, it is 'xecuting

rules based on the information just read and the information already in its working

memory. When KMS is in control, it is displaying the frame whose name was just read

from the data file, and is waiting for a user response to the query displayed o, the frame.

CHARACTERISTIC 2: The system not in control checks the applicable

semaphore file periodically to see if the contents of the file indicate that the other system has

relinquished control. When this system is not checking the file, a UNIX "sleep 1"

command is executed to temporarily suspend this system's execution.

Code internal to each of these systems was written to allow access to the above

mentioned files. The following two sections detail what was done to KMS and to CLIPS

allowing them to communicate with each other.

Writes "kmsinfo" file, Waits for "oksclips" file,
signals "okclips" file. reads "kmsinfo" file.

KMS CLIPS

Waits for "okkms" file, Writes "clipsinfo" file,
reads "clipsinfo" file. signals "okkms" file.

Figure 4.2: Interprocess Communication Scenario

IV-10

4.2.2.1 KMS Provisions for Interprocess Communication. KMS relays

the user's responses to queries to the expert system. These responses are formulated to

correspond to conditions embedded in rules in the expert system. When a user clicks on a

button to inform the prototype of current characteristics of the IMU, the applicable

information is written to the "kmsinfo" file. For instance, in Figure 4.3, the technicia:

would either click onl the "GOOD" or "BAD" button to indicate the status of the resolver

signal at the NCC.

DIAGNOSIS STAGE: MODE A ERROR CODES

The signal should look like this:

L...

..................

Check the resolver signal at the NCC.

The signal is:

Figure 4.3: Example of KMS Frame with Two Buttons

In KMS, buttons have properties which can be modified if desired. Figure 4.4

shows the properties of the "BAD' button. Inserting a frame name in the "link" slot would

have caused the named frame to be displayed when the button is activated. In the case of

Iv-Il

the prototype, the expert system decides which frame to display next; therefore, most

"link" slots are empty. The "Action" slots of a button allow the hypermedia progi.. -her to

use KMS's built-in programming language to perform various operations when a button is

activated. As is the case for this and most of the buttons in the prototype, information is

written to the "kmsinfo" file when the button is clicked. The first three "Action" statements

accomplish this. The final "Action" statement executes the instructions listed on frame

"dflorian8." These instructions perform the IPC CHARACTERISTIC 2 mentioned in

Section 4.2.2. When information from CLIPS is available, the instructions on this frame

also read the data from the "clipsinfo" file and display the appropriate frame or frames.

DIAGNOSIS STAGE: MODE A ERROR CODES

The signal should look like this:

Link:
Family: Tirrns

Check the resolver signal at the NCC. " :Fa° ol

The signal is: BADl wadn:2~Thickness: 1
Action: cOlenWrtlltsFe "krnenfo" Sf~ptr Sb open
,&olo: ff Sb open WrlitLineF#e *ioninfo" "sohvs'-$tgnaba.--nc¢ bad"
Acton: ff Sbopen ClsWrtleF~e "knunfo"

Action: Exec o11oawn8

Figure 4.4: Example of a KMS Button's Properties

IV-12

4.2.2.2 CLIPS Provisions for Interprocess Communication. The

expert system chosen for this project, CLIPS, has excellent external interface features.

These features allow it to be integrated with external functions and applications, and allow

it to be embedded within other programs. Consequently, CLIPS's main procedure file was

r,,,.A,,c% zo :r-,.d:de "C" Language code designed to simplify implementing the IPC.

Recompiling CLIPS source code to include the new main procedure file created an

executable program specifically tailored for this prototype. The main procedure file was

modified to perform the following functions: automatic loading of "he rules, reading and

checking the contents of the "ok-clips" and "kmsinfo" files, asserting the information

contained in the "kmsinfo" file into CLIPS's working memory, and executing the UNIX

"sleep 1" command meihtioned in Section 4.2.2. Appendix G is a listing of the modified

main procedure file. Modifying the main CLIPS procedure eliminated the need to perform

all of the above functions in rules. Three additional rules were added to write the

information CLIPS wanted to relay to KMS into the "clipsinfo" file. Another rule was

added to allow CLIPS to write to the "ok kms" file to signify that the information

contained in the "clipsinfo" file is ready for KMS to process. Table 4.3 lists the four rules

and their function, and Appendix E contains the CLIPS code for these rules.

4.2.3 Design and Coding Phase. During this phase, the information

collected during the Knowledge Acquisition Phase was used to create production rules (see

Appendix E) and hypermedia frames. First, Capt Skinner's expert system was convert,!

from S. 1 code into CLIPS code. Figure 4.5 shows the same rule implemented using S. 1

code and using CLIPS code. Second, the caiibr.qtion parameter knowledge and the user

interface were encoded using CLIPS. The text-based user interface provided by CLIPS

was used until the logic of the CLIPS code was determined to be correct. By using

"printout" statements, rules could display textual information to the computer terminal.

IV-13

Third, and after the logic of the CLIPS code was verified that it accurately represented the

troubleshooting knowledge, KMS frames were created for each rule which contained a

"printout" statement. These frames were designed to contain not only the information from

the "printout" statements, but also panel diagrams, wave diagrams, and various other

information to aid the user in answering the query displayed on the frame (see Figure 4.3).

Next, the "printout" statements were "commented out" and another statement, which

identified the appropriate hypermedia frame to display, was added in its place. This new

statement would cause one of the rules listed in Table 4.3 to execute, which in turn would

cause the appropriate hypermedia frame to be displayed.

Table 4.3: Four CLIPS Interprocess Communication Rules and Associated
Functions

Rule Name Function

write-one-frame-name Writes one frame name to "clipsinfo" file. KMS
will display this frame in KMS full screen mode.

write-two-frame-names Writes two frame names to "clipsinfo" file. KMS
will display the flist frame in half screen mode on
the left, and the second frame in half screen mode
on the right.

write-one-frame-name-change-value Writes one frame name, one parameter, and the
value of the parameter to "clipsinfo" file. KMS
will display the frame in full screen mode and
change the parameter value on the screen to the
new value.

ok-for-kms-to-read Writes a one to "okkms" file signifying the file
"clipsinfo" is ready to be read by KMS.

Finally, integration of the error message rules with the calibration parameter rules was

accomplished by adding an additional button to the calibration parameter troubleshooting

frames and an additional statement to each of the calibration parameter rules. Activating

this button would cause a fact to be asserted into the expert system's working memory

IV- 14

which would not allow the calibration parameter rules to execute. Once all the applicable

error message rules fired, and if a faulty component had not been determined, calibration

parameter troubleshooting would continue at the point where it was interrupted by the error

message.

S.1 Implementation
DEFINE RULE rule016

::APPLIED.TO I:IMU

::PREMISE check.resolver.signal.at.ncc[I] and
not resolve r.output.at. ncc.good[(]

::CONCLUSION check.resolver.signal.at.imu[]
END.DEFINE

CLIPS Imofementation
(defrule rule016

(check resolver-signal-at-ncc)
(resolver-sig nal-output-at-ncc bad)

=>

(assert (check resolver-signal-at-imu)))

Figure 4.5: Same Rule Written in S.1 and CLIPS

4.2.4 User Evaluation Phase. A DMINS technician used the prototype

during several simulated Mode A troubleshooting sessions. Again, the technician was

impressed with the system's ease of use. Because this part of the prototype is not driven

by failed tests, he recommended that an opening frame be included to discuss the concept

of operations of the Mode A part of the prototype. He particularly liked the sample graphs

and the ability to perform error message troubleshooting and calibration troubleshooting at

the same time.

4.2.5 Observations and Conclusions. Development of the Mode A portion

of the prototype included using hypermedia as the user inter"ace to an expert system.

IV- 15

Hypermedia provided a means for quickly developing an efficient, user-friendly, and

informative user interface. However, the provisions made to allow the hypermedia system

and expert system to share information were cumbersome at best. Because development of

the rules and the hypermedia frames were completely separate efforts, too much effort was

expended keeping track of which frame corresponded to which rule. For this reason,

debugging the expert system was hard to do unless the appropriate frame was also being

displayed.

A significant enhancement to Capt Skinner's expert system's capability is the addition

of calibration parameter troubleshooting. Most of a technician's time during Mode A is

spent observing calibration parameter values and behavior. The way these parameters are

used during troubleshooting varies from technician to technician. Because the knowledge

used during development came from two of the most experienced technicians, the prototype

uses the parameters in much the same way as those technicians. For this reason, the

prototype should provide a more efficient and standard way of troubleshooting.

4.3 Integration of Mode B and Mode A. Because the two modes of testing are

run in sequence, there is very little integration between them. The Mode B and Mode A

parts of the prototype were developed as separate stand-alone packages. Provisions were

made to integrate them in the prototype only to allow the user to select which mode of

testing to perform. Figure 4.6 is the KMS frame which allows this selection to be made.

When the "Mode B Diagnosis" button is activated, the user begins traversing the Mode B

frames of the hypermedia network. If the "Mode A Diagnosis" button is activated, the

modified CLIPS program starts executing in the background, transparently to the user.

From this point on, the information passed between the two systems determine the frames

to displayed.

IV-16

Diagnosis System
for

Inertial Navigation System
AN/WSN-1 (V)2

Inertial Measurement Unit

-Mode B oMode A

Diagnosis Diagnosis

Tutorial

T.O. Reference * Exit

Figure 4.6: Prototype Main Menu Frame

4.4 Constraining KMS's Capabilities. Three of KMS's standard features were

disabled in the prototype. Without modification, these features would permit navigation to

any f-ame in the network, allow modification of the network, and allow keyboard inputs.

Disabling the first two features was required because of reasons discussed below. Not

allowing keyboard inputs was accomplished to eliminate writing code to validate user input

and to streamline the user interface. All user inputs are accepted by using a mouse to

activate buttons on a frame.

KMS allows a user to perform many navigation operations. For instance, a user

can perform operations to go back to previously displayed frames, to go to the next frame

in the network, to go to a named frame, and to go to the first frame in the network.

Controlling the navigation of the user was needed to prevent the user from getting lost in

the network, and possibly activating a button which would relay the incorrect information

to the expert system, and in turn, relay incorrect information back to the user.

IV-17

KMS also allows users to modify the network by creating frames and deleting

frames which were created by that user. Since the expert system would not recognize these

new frames, the new frames in and of themselves would not be a problem. But, as

mentioned above, the possibility exists that a user could become lost in the network while

busy creating and deleting fiames.

4.5 Difficulty During Development. One difficulty worth mentioning arose

during development. It surfaced during conversion of the text-based user interface into

hypermedia (see Section 4.2.2).

During development and prior to implementing the user interface in hypermedia,

CLIPS's text-based user interface was used. If information was needed from the user, a

"read" statement was included in the rule containing the query. A "read" statement causes

CLIPS to suspend execution of all the other rules which are waiting to be executed, until

the user responds to the query. When the rules were changed to implement the hypermedia

interface, all the "read" statements were taken out of the rules. Hence, when CLIPS would

execute a rule which used to contain a "read" statement, it would not suspend CLIPS

execution and any activated rules would execute. When all of the rules had executed,

CLIPS terminated. This caused an IPC problem because, after the user response was

accepted by KMS, KMS would be waiting for information from CLIPS. Since CLIPS had

already terminated, KMS would be in a deadlock state. To solve this problem, the rules

which wrote information to the "clipsinfo" file (see Table 4.3) were modified to call the

"kmsfileready" function (see Appendix G) which would suspend execution of CLIPS

until the information from KMS was asserted into CLIPS's working memory.

The final chapter summarizes this research effort and provides recommendations for

further research. Also, conclusions concerning integrating hypermedia technology and

expert system technology will be addressed.

IV- 18

V. Conclusions and Recommendations

This chapter identifies conclusions derived from this research and submits

recommendations to improve developing this type of system in the future. Of special

interest is the importance of the prototype to the Dual Miniature Inertial Navigation Systems

(DMINS) organization located at Newark AFB, Ohio, and the enhancements which could

be made to the prototype to improve their troubleshooting practices.

5.1 Conclusions.

The prototype developed as a part of this research implemented an expert system's

user interface using a hypermedia system. Hypermedia facilitated construction of a user-

friendly, informative user interface by allowing the dynamic creation and editing of screens

without the need to learn a sophisticated programming language.

While the user interface was considerably easier to create using the hypermedia

system compared to using an expert system implementation, problems arose because the

user interface and the expert system were separately developed. It became the

programmer's responsibility to ensure that relevant information, in the proper form, was

made known to both the hypermedia system and the expert system. The programmer had

to keep track of which rule and which hypermedia frame were related, and code this into

the expert system. Since the expert system contained references to hypermedia frames and

not the actual queries to the user, it was hard to recognize the logic embedded in the code.

For this reason, maintenance of the expert system could be difficult.

A maintenance environment was used as the problem domain for this system.

Specifically, the prototype was designed to help depot-level technicians troubleshoot the

DMINS Inertial Measurement Unit (IMU). DMINS testing and troubleshooting knowledge

was used to develop the prototype which encompasses a significant portion of the DMINS

V-1

troubleshooting procedures and practices. Mode A and Mode B testing, and both error

message and calibration parameter troubleshooting, are included. The prototype has the

potential 3 decrease the average test time of an IMU for the following reasons:

a. Two of the more experienced DMINS technicians were used as primary

knowledge sources. The prototype provides standardized troubleshooting

procedures based on their vast knowledge and many years of experience.

b. Because calibration parameter information can be ignor.-I by the

technician, the prototype will ensure that this information is used, possibly

resulting in the detection of problems earlier in testing.

5.2 Recommendations.

This section identifies several enhancements to the prototype as they would apply to

DMINS troubleshooting. Also, ways in which hypermedia and expert system technology

could better be integrated are discussed.

5.2.1 DMINS. Several additional features could be incorporated into the

prototype to improve the overall performance and capability of the system. With these

enhancements, the prototype will become an even more powerful tool which can be used

during all phases of testing. The following is a list of features, from the easiest to

implement to the hardest, to be considered for future development:

a. Include Mode B tests 10 through 22, for completeness.

b. Include error message troubleshooting during Mode B, for completeness.

c. Obtain multiple technicians to help in development, to prevent the system from

being biased towards one way of troubleshooting.

V-2

d Ensure close involvement of DMINS technicians throughout development, for

accuracy and user satisfaction.

e. Compile the CLIPS code, to produce a run-time program and decrease the

response time of the system.

f. Include an explanation facility, for training purposes.

g. Add the ability to save the status of a test and to restart the same test at a later

time, to mirror actual troubleshooting.

h. Allow a user to retract responses, to correct inputs and to allow the system to be

used for training purposes.

i. Study previous navigation graphs, which are plotted during the Navigation

Performance test, and the relationship between these graphs and the mean time

between failure (MTBF) of the associated IMU. For example, a curve that is

within the specification limits is shipped even though the IMU looks as if it is

drifting. There might be a relationship between this type of graph and an IMU

with a small MTBF.

j. Finally, obtain calibration parameter readings, error messages, and test failure

data directly from the ATE, to avoid unnecessary queries to the user.

5.2.2 Hypermedia System and Expert System Integration. To relieve

the programmer from having to code the means of communication between the hypermedia

system and the expert system, applications having features of both types of systems should

be developed. This would eliminate the overhead (i.e., shared files, busy waiting,

programmer bookkeeping, etc.) experienced during development of this prototype.

V-3

Expert systems need to have the capability to dynamically create screens and allow the

the screens to be edited as the rules are being created. Not only will this facilitate creating

the user interface, it will also allow the user to become more involved with the design and

implementation of the system. When creating rules, the expert system could automatically

generate a hypermedia frame containing buttons relating to the valid responses to queries.

These buttons, when activated, would relay the information in the correct form to the

inference engine of the expert system. The automatically-generated hypermedia frame

would be available to edit to ensure that an adequate and customizable description of the

query is given.

5.3 Summary.

This research demonstrated how a hypermedia system could be used to improve the

creation and editing of an expert system's user interface. It also demonstrated the need for

these two exciting technologies to merge, each borrowing features from the other. The

differences between hypermedia systems and expert systems are diminishing as the

capabilities of each are improving. Systems incorporating the strengths of both hypermedia

systems and expert systems are emerging rapidly and will continue to evolve into morez

effective development environments.

V-4

Appendix A: DMINS Shop Replaceable Units (SRUs)

This appendix identifies the 38 DMINS SRUs and for each identifies the replacement
par: number.

ID# SRU Name
3A1 Bandpass Filter and Shift Register
3A2 Bandpass Filter and Shift Register
3A3 Precision Torquing Driver (X)
3A4 Precision Torquing Driver (Y)
3A5 Precision Torquing Driver (Z)
3A7 Platform Electronic Switch
3A8 Shorting Plug
3A9 Precision Current Network
3A10 Stable Platform

3A10A3 Displacement Gyroscope (X-Y)
3A10A4 D splacement Gyroscope (Y-Z)
3A10A7 Velocity Meter (X)
3A10A8 Velocity Meter (Y)
3A1OAR1 Resolver Buffer Amplifier
3AlOAR5 Gyro Buffer Amplifier (X-Y)
3AIOAR6 Gyro Buffer Amplifier (Y-Z)
3PS 1 640 Hz Power Supply (X-Y)
3PS2 640 Hz Power Supply (Y-Z)

3PS3 Power Cube
3PS7 400 Hz Power Supply No. 2
3PS8 400 Hz Power Supply No. 1
3PS9 Triangle Generator and Case Rotation Power Supply
3PSIO 4.8 KHz Power Supply

3PS 11 Frequency Standard
3AR I D.C. Amplifier (X-Y)
3AR2 D.C. Amplifier (Y-Z)
3AR3 Synchro Signal Buffer Amplifier
3AR4 Gyro Cage Amplifier
3AR5 Thermoelectric Signal Amplifier
3AR6 Gyro Temperature Controller

3AR7 Gimbal Cage Amplifier
3AR8 Platform Signal Amplifier

A-1

Appendix A (cont.)

ID# SRU Name
3AR9 Platform Electronic Control Amplifier (Roll)
3ARlO Platform Electronic Control Amplifier (Pitch)
3AR 11 Platform Electronic Control Amplifier (Azimuth)
3AR12 Gimbal Rate Electronic Control Amplifier (Roll)
3AR 13 Gimbal Rate Electronic Control Amplifier (Pitch)
3AR14 Gimbal Rate Electronic Control Amplifier (Azimuth)

A-2

Appendix B: DMINS Error Messages

This appendix identifies the 62 DM1NS error messages and their accompanying
message number. Both the error message and the message number are output from the
ATE.

Message Error Message Error
No. Message No. Messaae

0101 Automatic Shutdown * 0704 No Input Roll *
0102 IMU O'Load 0801 Plat Stab Abort *

0103 IMU O'Temp * 0901 XVM Precounter Fault
0104 Pwr Interrupt 0902 YVM Precounter Fault
0105 DCC O'Load 0903 Both Precounter Failure
0106 DCC O'Temp 0904 VM Bite Failure
0201 I/C Fault 1001 X Gyro Torque Fault
0202 Comp Tie-In Sw On 1002 Y Gyro Torque Fault
0203 I/C Fault Inhb Enab 1003 Z Gyro Torque Fault
0204 Seq Cnt No Compare 1101 Velocity Unreasonable *

0205 I/C Data Loop Fault 1102 System Not Properly Caged
0206 IIC Fault Cont 1201 Gyro Hot *
0301 In Parity Test Inhb Enab 1202 Gyro Cold
0302 Out Word Par Inhb Enab 1203 Gyro Temp Normal
0303 Input Parity Fault 1301 Mux Decoder DL Fault
0401 Output Word Parity Fault 1302 Cage XY DL Fault
0402 Output Word Parity Cont 1303 Cage YZ DL Fault
0501 IMU Major * 1304 Gyro Start DL Fault
0502 Excess Angle * 1305 Gyro Run DL Fault
0503 Servo Disable * 1306 UYK Good DL Fault
0504 Major Reset Fault * 1307 Input Panty DL Fault
0601 XY Speed Control 1308 Input Parity No DL Fault
0602 YZ Speed Control 1309 Output Word Parity DL Fault
0603 Z Stab * 1401 VT Greater Than 2 Knots *

0604 System In Free Run 1403 VT-VR Greater Than 3 Knots *

0605 Minor Reset Fault * 1404 MINISINS Vel Dif Exceeds Lim
0606 Minor Fault Cont 1405 MINISINS Pos Dif Exceeds Lim
0607 IMU Minor 1501 Parity Test I No Go
0701 No Input 3 A -es * 1502 Parity Test 2 No Go

0702 No Input Az * 1503 Parity Test 3 No Go
0703 No Input Pitch * 1504 Put Intercom Test No Go

* Requires immediate troubleshooting action.

B-1

Appendix C: DMINS Calibration Parameters

This appendix lists and defines the DMINS calibration parameters. For each
parameter, the related component is identified. If a parameters' reading is out of
specification, then the applicable component would be suspected as either the cause of a
problem, or causing a problem in the future.

Paramete Description Component
AX Velocity Meter Bias X Velocity Meter
KX Scale Factor (knots/pulse) X Velocity Meter
KXY Cross-Axis Scale Factor (knots/pulse) X Velocity Meter
AY Velocity Meter Bias Y Velocity Meter
KY Scale Factor (knots/pulse) Y Velocity Meter
KYX Cross-Axis Scale Factor (knots/pulse) Y Velocity Meter
KYZ Cross-Axis Scale Factor (knots/pulse) Y Velocity Meter
BX Gyro Bias XY Gyro
SX Scale Factor (degree/hour) XY Gyro
SXY Misalignment in the X-Y Plane XY Gyro
SXZ Misalignment in the X-Z Plane XY Gyro
SYX Misalignment in the Y-X Plane XY Gyro
3ZX Msalignment in the Z-X Plane XY Gyro
BY Gyro Bias YZ Gyro
BZ Gyro Bias YZ Gyro
SY Scale Factor (degree/hour) YZ Gyro
SYZ Misalignment in the Y-Z Plane YZ Gyro
SZ Scale Factor (degree/hour) YZ Gyro
SZY Misalignment in the Z-Y Plane YZ Gyro

C-1

Appendix D: First Nine Mode B Tests and Subtests

This appendix lists the first nine Mode B tests and each tests' applicable subtests.
The first nine tests are incorporated in the prototype developed during this research.

Tes t Description

B 1.0 IMU Power Up and Thermal Tests
.1 IMU Thermal Switch
.2 IMU Power Shutdown
.3 IMU 64 Hz Clock
.4 AZ Gimbal Motor
.5 IMU Air Flow

B2.0 IMU DC Power Supply Tests
.1 DC Power Supply - +28V

.2 DC Power Supply - +6V

.3 DC Power Supply - -6V

.4 DC Power Supply - +12V
.5 DC Power Supply - -12V

.6 DC Power Supply - +24V

.7 DC Power Supply - -24V

.8 DC Power Supply - +48V

.9 DC Power Supply - +60V

B3.0 IMU AC Power Supply Tests
.1 AC Power Supply - 1 15V Reference

.2 AC Power Supply - 9.6KHz Triangle Power

.3 AC Power Supply - 6.72KHz Frequency Standard
.4 AC Power Supply - 4.8KHz Angle 0 Frequency Standard
.5 AC Power Supply - 4.8KHz 90 Frequency Standard
.6 AC Power Supply - 4.8KHz

.7 AC Power Supply - 640Hz Angle 0 Frequency Standard

.8 AC Power Supply - 400 Hz Case Rotation

.9 AC Power Supply - 80Hz Angle 0 Frequency Standard

.10 AC Power Supply - 80Hz Angle 0 Case Rotation Triangle
.11 AC Power Supply - 80Hz Angle 120 Case Rotation

.12 AC Power Supply - 80Hz Angle 0 Case Rotation

.13 AC Power Supply - 64Hz Clock

D-I

Appendix D (coni.)

Test Description

B4.0 Gyro Temperature Alarm Tests
.1 XY Gyro Hot Indication
.2 XY Gyro Cold Discrete
.3 YZ Gyro Hot
.4 YZ Gyro Cold

B5.0 Thermoelectric Control Tests
.1 Heat Test Limit

.2 Cool Test Limit
B6.0 BITE Status Checks

.1 XY Gyro Speed BITE

.2 YZ Gyro Speed BITE

.3 400Hz BITE

.4 AZ Overate BITE

.5 Servo Disable

.6 Free Run BITE Fault

.7 AZ Cage
B7.0 BITE Operation Tests

.1 400Hz Servo Disable

.2 4.8Hz Servo Disable

.3 400Hz Bite

.4 AZ Overate Servo Disable

.5 Free Run

.6 Free Run Reset
B8.0 Cage Discrete Tests

A 1 AZ Gimbal Motor
.2 IMU Cage Discrete

B9.0 Resolver Presence
.1 Roll Resolver (2X)
.2 Roll Resolver (36X)

.3 Pitch Resolver (2X)

.4 Pitch Resolver (36X)

.5 Azimuth Resolver (IX)

.6 Azimuth Resolver (36X)

D-2

Appendix E: CLIPS Source Code

This appendix contains the expert system source code. All comments are
preceded by a semicolon. Commented lines which qtart with "printout" were used before
integrating the expert system with the hypermedia system. Facts asserted which begin with
the word "frame" reference a hypermedia frame name. The converted Capt Skinner rules
appear in the last 24 pages of this appendix and are the rules which govern the error
message troubleshooting. Shim Calibration rules start on Page E-3. Gyro Calibration
rules start on Page E- 13. Master Heading rules start on Page E-22. Navigation Alignment
rules start on Page E-28. Navigation Performance rules start on Page E-3 1. Rules which
assert initial conditions start on Page E-36. Rules which allow communication with the
hypermedia system start on Page E-37.

Mode A calibration parameter rules.

(defrule start-up
?if <- (initial-fact)

(retra, i ?if)
(assert (start mode-a)))

All these parameter rules will only fire if an error code fact has
;** * not been asserted.

;** * This rule finds out which Mode A test to run. It will also

;** * provide a way to exit the program. After each of the five Mode A

tests completes (pass or fail) this ruie will fire.

(defrule start-mode-a
?sm <- (start mode-a)

(not (error-code-phase))

(retract ?sm)
;(printout t t "Which test would you like to run?")
;(printout t t "Enter shim-cal, ")

;(printout t t" gyro-cal, ")

E-1

Appendix E. CLIPS Source Code

;(printout t t " master-heading, ")

;(printout t t" nav-align,")

;(printout t t" nav, ")

;(printout t t" exit: ")

;(assert (begin test =(read)))
(assert (frame dflorian 134)))

;*** Start Shim Cal test.

(defrule start-shim-cal
?bt <- (begin test shim-cal)

(not (error-code-phase))

(retract ?bt)
(assert (start shim-cal 1)))

;*** Start Gyro Cal test.

(defrule start-gyro-cal
?bt <- (begin test gyro-cal)
(not (error-code-phase))

(retract ?bt)
(assert (start gyro-cal 1)))

;*** Start Master Heading test.

(defrule start-master-heading
?bt <- (begin test master-heading)

(not (error-code-phase))

(retract ?bt)
(assert (start master-heading)))

;*** Start Nav Align test.

(defrule start-nay-align
?bt <- (begin test nav-align)

(not (error-code-phase))

E-2

Appendix E: CLPS Source Code

(retract ?bt)
(assert (start nay-align)))

;*** Start Nav test.

(defrule start-nav
?bt <- (begin test nay)

(not (error-code-phase))

(retract ?bt)
(assert (start nay 1)))

;*** Exit DMINS Expert System

;(defrule exit-dmins
; ?bt <- (begin test exit)
; (not (error-code-phase))

; (retract ?bt)
; (printout t t "Goodbye." t t)

; (assert (frame dflorian 135)))

Shim Calibration Rules

;*** At the end of each Shim-Cal, get the status of the AX and AY
;*** parameters. Not much troubleshooting is done until the run is
;*** over. A ":oo close to spec" parameter is one which it's value is
;*** greater than 0.06 but still within the spec. The ony parameters
;*** this test is concerned with is AX and AY.

(defrule get-ax-status
?ss <- (start shim-cal ?test-num)

(not (error-code-phase))

;(printout t t "After running Shim-Cal " ?test-num ":" t)

E-3

Appendix E: CLIPS Source Code

;(printout t t "Is AX out-of-spec, too-close-to-spec, or good? ")

;(assert (ax shim-cal ?test-num =(read)))
(assert (frame dflorian136 Test: ?test-num)))

(deffacts shim-cal-deffact
(finished shim-cal 0))

(defrule get-ay-status
?ss <- (start shim-cal ?test-num)

(ax shim-cal ?test-num ?status)
?rs <- (finished shim-cal =(- ?test-num 1))

(not (error-code-phase))

(retract ?ss ?rs)
;(printout t t "After running Shim-Cal " ?test-num ' t)

;(printout t t "Is AY out-of-spec, too-close-to-spec, or good? ")

;(assert (ay shim-cal ?test-num =(read)))
(assert (finished shim-cal ?test-num))
(assert (frame dflorian365 Test: ?test-num)))

;** The technicians look at how the parameters are changing from one

;*** run to the next. From one run to the next, the parameter should
;*** be getting closer to the ideal specification (i.e., the delta

;*** terms should be getting smaller). If this isn't happening, a
;*** problem probably exists. The following rules describe this
;*** behavior. A parameter which is significantly moving away from

;* spec in consecutive runs has a problem. Other types of changes
;*** are self explanatory. For example, if a parameter was out of
;* spec for runs 1 and 2 but is significantly getting closer to the
;***' spec, a third run might correct the problem.

;*** If a parameter stays the same (either good, close to, or out of

;* spec, from run 1 to 2, this rule will fire.

(defrule parameter-change-from-previous-run
(?parameterl shim-cal I ?plstatus)
(?parameterl shim-cal 2 ?plstatus)
(?parameter2 shim-cal 2 ?p2status)

E-4

Appendix E: CLIPS Source Code

(test (neq ?plstatus too-close-to-spec))
(test (neq ?parameterl ?parameter2))
(not (error-code-phase))

;(printout t t '"The" ?parameter" change from the previous run was: ")

;(printout t t" none, ")
;(printout t t" significantly-better (better), ")
;(printout t t" significantly-worse (worse)? ")

;(assert (?parameter change 1 to 2 =(read)))
(assert (frame dflorian 137 Parameter: ?parameterl)))

;* The following rules describe how a parameter passes a Shim Cal
;* run. When both parameters pass the same run, a check for gross

;* is done.

;***~ If a parameter is good for two runs and is significantly
;*** moving toward the spec, then it passed the current test.

(defrule good-parameter-got-better
(?parameter change 1 to 2 better)
(?parameter shim-cal I good)
(?parameter shim-cal 2 good)
(not (error-code-phase))

(assert (?parameter passed shim-cal 2)))

;*** If a parameter is good and did not significantly change from
;**' previous run, then the parameter passed the current test.

(defrule good-parameter-no-change
(?parameter change 1 to 2 none)
(?parameter shim-cal 2 good)
(not (error-code-phase))

(assert (?parameter passed shim-cal 2)))

** A parameter which was close to the spec on the previous run is
** now looking good; therefore, it passed the test.

E-5

Appendix E: CLIPS Source Code

(defrule too-close-parameter-is-now-good
(?parameter shim-cal ?test-num too-close-to-spec)
(?parameter shim-cal =(+ ?test-num 1) good)
(not (error-code-phase))

(assert (?parameter passed shim-cal =(+ ?test-num 1))))

** An out of spec parameter in previous run is now good and passcs
• *** test.

(defrule out-of-spec-parameter-is-now-good
(?parameter shim-cal ?test-num out-of-spec)
(9parameter shim-cal =(+ ?test-num 1) good)
(not (error-code-phase))

(assert (?parameter passed shim-cal =(+ ?test-num 1))))

** If the parameter (AX or AY) status is good after the first or third
** run, assert that the parameter passed this run. When both pass the
** same run, then the IMU will pass Shim Cal.

(defrule parameter-passed-shim-cal- I
(?parameter shim-cal 1 good)
(not (error-code-phase))

(assert (?parameter passed shim-cal 1)))

(defrule good-parameter-still-good-run-3
(?parameter shim-cal 2 good)
(?parameter shim-cal 3 good)
(not (error-code-phase))

(assert (?parameter passed shim-cal 3)))

** The following rule signifies that an IMU has passed Shim Cal.
** Shim Cal does not check for gross failures which occur if a

** parameters upper or lower bound are out of spec. This rule base
** checks for gross failures.

If both AX and AY passed, then check for gross failures. A

E-6

Appendix E: CLIPS Source Code

;*** parameter has a gross failure if it exceeds its upper or lower
•**limits.

(defrule shim-cal-passed
?ax <- (ax passed shim-cal ?test-num)
?ay <- (ay passed shim-cal ?test-num)

(not (error-code-phase))

(retract ?ax ?ay)
(assert (shim-cal ?test-num passed? yes)))

;*** These gross failure rules are used in Shim-Cal and in Gyro-Cal.
;*** When a fact is asserted that says either Shim Cal or Gyro Cal
;*** passed, these rules will fire.

(defrule check-for-gross-failures
?tc <- (?test ?test-num passed? yes)
(finished ?test ?test-num)
(test (or (eq ?test shim-cal)

(eq ?test gyro-cal)))
(not (error-code-phase))

(retract ?tc)
;(printout t t "IMU passed " ?test "." t)
;(printout t t "Check for any gross failures." t)
;(printout t t "Did any parameter exceed the gross limits (yes/no)? ")

;(assert (gross-failure? =(read)))
(assert (frame dflorian138 Test: ?test-num)))

;*** If no gross failures, begin next test.

(defrule no-gross-failures

?gf <- (gross-failure? no)

(not (error-code-phase))

(retract ?gf)
(assert (start next-test)))

(defrule shim-cal-complete

E-7

Appendix E: CLIPS Sourre Code

.rs <- (finished shim-cal ?number)

?sn <- (start next-test)

(test (!= ?number 0))
(not (error-code-phase))

(retract ?rs ?sn)
;(printout t t "Shim Cal is complete. Run Gyro Cal." t)

;(assert (start mode-a))
(assert (frame dflorian 139)))

(defrule gyro-cal-complete
?rs <- (finished gyro-cal ?)

?sn <- (start next-test)
(not (error-code-phase))

(retract ?rs ?sn)
;(printout t t "Gyro Cal is complete. Run Master Heading." t)

;(assert (start mode-a))
(assert (frame dflorianl40)))

;*** If there was a gross failure, find out what parameter. This

;* program will assume only one parameter will have a gross

;* failure. While this does not seem realistic, in reality, AGMC

;***~ is not even looking for gross failures at this time. Catching

;* possible problems early on in the testing cycle can save time

• *** and resources.

(defrule had-gross-failure
?gf <- (gross-failure? yes)

(not (error-code-phase))

(retrct ?gf)
;(printout t t "Which parameter had the gross failure? ")

;(assert (=(read) gross-failure))
(assrrt (frame dflorianl41)))

;*** Depending on the parameter with the gross failure, the

;*** faulty component is determined.

(defrule gross-failure-component

E-8

Appendix E: CLIPS Source Code

?pf <- (gross-failure ?parameter)
(?parameter ?component parameter)
(not (error-code-phase))

(retract ?pf)
(assert (faulty ?component)))

** The following 3 rules describe how a parameter can fail a Shim
•*** Cal run.

** If the status of a parameter is not good during first run, then
;* ** that parameter failed the first Shim-Cal. This rule will fail a

** parameter for being "too-close-to-spec". While the test
;*** equipment considers this parameter good, another run will

** determine if the parameter will move away or toward the
** specification. Shim Cal is a very short test comipared to the
** Mode A tests and it is worth the time now to try and detect a
** problem. This type of troubleshooting is only being done by the

;*** most experienced AGMC technicians.

(defrule parameter-failed-shim-cal- I
(?parameter shim-cal 1 ?status)
(test (neq ?starus good))
(not (error-code-phase))

(assert (?parameter failed shim-cal 1)))

;*** If the parameter was out-of-spec in run I and run 2 but is
;*** getting closer to a fix, fail the term but make sure another cal
;*** is run to see if it will correct itself.

(defrule parameter-getting-better
(?parameter change I to 2 better)
(?parameter shim-cal I out-of-spec)
(?parameter shim-cal 2 out-of-spec)
(not (error-code-phase))

(assert (?parameter failed shim-cal 2)))

E-9

Appendix E: CLIPS Source Code

;** If a parameter close to the spec, the parai±eter fails the
• currtnt test.

(defrule parameter-is-too-close-to-spec
(?parameter shim-cal ?test-num ?status)
(?paramieter shim-cal =(+ ?test-num 1) too-close-to-spec)
(not (error-code-phase))

(assert (?parameter failed shim-cal =(+ ?test-num 1))))

;** If either AX or AY failed a run, then start another run, unless
;* the run was the third one. AGMC will always run at least 2
,*** Shim-Cals.

(defrule run-next-shim-cal
?tl <- (?parameterl ?status shim-cal ?test-num)

?t2 <- (?parameter2 failed shim-cal ?test-num)
(test (neq ?parameterl ?parameter2))
(test (< ?test-num 3))
(test (or (eq ?status passed)

(eq ?status failed)))
(not (error-code-phase))

(retract ?tl ?t2)
(assert (start shim-cal =(+ ?test-num 1))))

;*** The following rules describe when to stop running Shim Cal and
;*** what the suspected faulty component is.

;* If any parameter fails a 3rd Shim-Cal a problem exists in a
;*** velocity meter. This will fire if a term is too close to the

;*** spec after the 3rd run. This is not how AGMC does it (they would
;* pass the IMU. Since the parameter should be getting better

;*** each run, I've chose to fail the IMU. This could mean

;*** improved MTBF of IMUs that would have been shipped with
** marginally accepted specifications.

(defrule parameter-failed-shim-cal-3
(?parameterl failed shim-cal 3)

E-10

Appendix E: CLIPS Source Code

(?parameter2 ?status shim-cal 3)
(?parameterl ?compl ,nent parametcr)
(test (neq ?parameterl parameter2))
(not (error-code-phase))

(assert (problem with ?component)))

;***' If the parameter stayed either good or bad from one run to the

;* next, and the change was significantly worse, then there is a
;*** problem one of the velocity meters.

(defrule velocity-meter-problem
(?parameterl change 1 to 2 worse)
(?parameterl shim-cal 1 ?plstatus)
(?pararneterl shim-cal 2 ?plstatus)
(?parameter2 shim-cal 2 ?p2status)
(?parameterl ?component parameter)
(test (neq ?parameterl ?parameter2))
(not (error-code-phase))

(assert (problem with ?component)))

;** If a parameter was out of spec for 2 consecutive runs and did not

;*** show any improvement, then a problem exists in a velocity meter.

(defrule out-of-spec-for-2-runs
(?parameterl change I to 2 none)
(?parameterl shim-cal 2 out-of-spec)
(?pararneterl ?component parameter)
(?parameter2 shim-cal 2 ?status)
(test (neq ?parameterl ?parameter2))
(not (error-code-phase))

(assert (problem with ?component)))

;*** If a parameter was good or too close to spec on a previous run

;* and is now out of spec, a problem exists in a velocity meter.

(defrule parameter-not-then-out-of-spec
(?parameterl shim-cal ?test-num ?status)

E-11

Appendix E: CLIPS Source Code

(?parameterl shim-cal =(+ ?te.st-num 1) out-of-spec)
(?parameterl ?component parameter)
(?parameter2 shim-cal =(+ ?test-num 1) ?p2status)

(test (neq ?parameterl ?paramneter2))
(test (or (eq ?status good)

(eq ?status too-close-to-spec))

(not (error-code-phase))

(assert (problem with ?component)))

,**A problem was found in only one of the VM parameters. This rule

;**must fire only if the next rule doesn't.

(defrule problem-with-one-yin
(declare (salience -200))
?pw <- (problem with ?component)
(not (error-code -phase))

(retract ?pw)
(assert (faulty ?component)))

;**If a problem with both AX and AY, technician should go see
,~*supervisor. This dmr, not happen very often. It is possible

,""both velocity meters could be faulty.

(defrule problem-with-ax-and-ay
(declare (salience -100))
?px <- (problem with x-vm)
?py <- (problem with y-vmn)
(riot (error-code-phase))

(retract ?px ?py)
;(printout t t "Having a problem with both AX and AY is very rare." t)

;(printout t t "Both velocity meters could be faulty." t)

;(printout t t "See Shop Supervisor." t)

(assert (frame Malrian 142)))

E- 12

Appendix E: CLIPS Source Code

Gyro Calibration Rules

** During Gyro Cal runs, velocity parameters are printed. If these
** partameters are high, the technician can use the information
** concerning directiona and angle to determine the faulty
** component. If the velocities are not high, the technician waits
** for the run to finish. At this time, the status of some
** parameters is given. The technician will use the information
** printed concerning the parameters to do the troubleshooting. By
** looking at which parameters failed and by how much, a faulty
** component can be detected. After a Gyro Cal run passes, a check
** for gross failurs is done using the code found in the Shim Cal

• *** section.

** Find out if any velocities are high at zero degrees. If they are
** high, then check them again at 90 degrees.

(defrule were-vdifs-high-at-zero?
?sg <- (start gyro-cal ?test-num)

(not (error-code-phase))

(retract ?sg)
;(printout t t "What velocities were high at zero degrees:")
;(printout t t " n-s, ")

;(printout t t" e-w, ")

;(printout t t" both, ")

;(printout t t none? ")
;(assert (high-velocities zero-degrees =(read)))
(assert (finished gyro-cal ?test-num))
(assert (frame dflorian 143)))

** If there were velocities high at zero degrees, find out if any
** velocities were high at 90 degrees.

(defrule were-vdifs-high-at-90?
(high-velocities zero-degrees ?vdif)
(test (neq ?vdif none))

E-13

Appendix E: CLIPS Source Code

(not (error-code-phase))

;(printout t t "What velocities were high at 90 degrees:")

;(printout t t " n-s, ")

;(printout t t " e-w, ")

;(printout t t " both, ")
;(printout t t " none? ")

;(assert (high-velocities ninety-degrees =(read)))

(assert (frame dflorian144)))

** If velocities were high in n-s then e-w, then there is a problem
** with the x velocity meter.

(defrule vdifs-high-n-s-then-e-w
?hl <- (high-velocities zero-degrees n-s)
?h2 <- (high-velocities ninety-degrees e-w)

(not (error-code-phase))

(retract ?hl ?h2)

(assert (faulty x-vm)))

;*** If velocities were high in e-w then n-s, then there is a problem

** with the y velocity meter.

(defrule vdifs-high-e-w-then-n-s
?h 1 <- (high-velocities zero-degrees e-w)

?h2 <- (high-velocities ninety-degrees n-s)

(not (error-code-phase))

(retract ?hl ?h2)

(assert (faulty y-vm)))

;*** If velocities were high in n-s and stayed n-s, then there is a

** problem with the yz gyro.

(defrule vdifs-high-n-s-then-n-s
?hl <- (high-velocities zero-degrees ?directionl)
?h2 <- (high-velocities ninety-degrees ?direction2)

(test (or (and (eq ?directionl n-s)

(eq ?direction2 n-s))

E- 14

Appendix E: CLIPS Source Code

(and (eq ?direction I both)
(eq ?direction2 n-s))

(and (eq ?direction I n-s)
(eq ?direction2 both))))

(not (error-code-phase))

(retract ?hl ?h2)
(assert (faulty yz-gyro)))

If velocities were high in e-w and stayed e-w, then there is a
problem with the xy gyro.

(defrule vdifs-high-e-w-then-e-w
?hl <- (high-velocities zero-degrees ?directionl)
?h2 <- (high-velocities ninety-degrees ?direction2)
(test (or (and (eq ?direction 1 e-w)

(eq ?direction2 e-w))
(and (eq ?direction 1 both)

(eq ?direction2 e-w))
(and (eq ?direction 1 e-w)

(eq ?direction2 both))))
(not (error-code-phase))

(retract ?hl ?h2)
(assert (faulty xy-gyro)))

Having both directions high for both angles does not happen very much
or at all.

(defrule both-vdifs-high
?hl <- (high-velocities zero-degrees both)

?h2 <- (high-velocities ninety-degrees both)
(not (error-code-phase))

(retract ?h 1 ?h2)
;(printout t t "This is very rare. Contact your supervisor." t)
(assert (frame dflorian145)))

If no velocities were high at zero degrees, or if they were high

E- 15

Appendix E: CLIPS Source Code

;*** at zero but not at 90 degrees, let current test finish and ask

;***' operator if the test passed.

(defrule vdifs-ok
?hv <- (high-velocities ?degree none)
(finished gyro-cal ?test-num)
(not (error-code-phase))

(retract ?hv)
;(printout t t "Velocities are fine." t)

;(printout t t "Did Gyro-Cal " ?test-num "pass (yes/no)? ")

;(assert (gyro-cal ?test-num passed? =(read)))
(assert (frame dflorian146 Test: ?test-num)))

;*** If current Gyro-Cal run passes, check for gross failures. A

;*** parameter has a gross failure if it exceeds it upper or lower

;*** limit. Use the same rules found in Shim-Cal rules section.

;*** If first Gyro Cal fails, always nn another. Not much

;*** troubleshooting is done if the first run fails.

(defrule run-gyro-cal-2
?gc <- (gyro-cal I passed? no)
?rg <- (finished gyro-cal 1)

(not (error-code-phase')

(retract ?gc ?rg)
;(pintout t t "Let Gyro Cal 2 run." t)

;(assert (start gyro-cal 2))

(assert (frame dflorian147)))

;*** If second or third (yTo Cal fails then we need to find out which

;*** parameter(s) is/are out of spec. 3 rules.

(defrule gyro-cal-2-or-3-fails
?gc <- (gyo-cal ?test-num passed? no)

(finished gyro-cal ?test-num)
(test (1= ?test-r, um 1))

(not (error-code-phase))

E-16

Appendix E: CLIPS Source Code

(retract ?gc)
(assert (get failed-parameters gyro-cal ?test-num)))

(defrule get -failed-parameters
?gf <- (get failed-parameters gyr-cal ?test-num)
(finished gyro-cal ?test-num)
(not (error-code-phase))

(retract ?gf)
;(printout t t "Enter failed parameter or no-more if done. ")

;(assert (failed-parameter =(read) gyro-cal ?test-num))
(assert (frame dflorian148 Test: ?test-num)))

(defrule more-failed-parameters
(failed-parameter ?parameter gyro-cal ?test-num)
(finished gyro-cal ?te: t-num)
(test (neq 9pnrameter no-more))
(not (error-code-phase))

(assert (get failed-parameters gyro-cal ?test-num)))

** Technicians look at how each of the parameters failed. The way a
** parameter fails determines how the troubleshooting proceeds. If
** a parameter just barely fails, you should run another Cal. If a

;*** parameter fails real bad, then if it can be isolated to one
** component then Gyro Cal stops. If all the real bad failures
** identify more than one component, a third Cal will be run.

;*** If all the parameters are close to spec and this is run 2, then
** run a third test.

(defrule how-bad-did-failed-parameter-fail
(failed-parameter no-mo. gyro-cal ?test-num)
(failed-parameter ?parameter gyro-cal ?test-num)
(finished gyro-cal ?test-num)
(test (neq ?parameter no-more))
(not (error-code-phase))

;(printout t t "Was " ?parameter "close to spec (yes/no)? ')

;(assert (?parameter close-to-spec? =(read)))

E-17

Appendix E: CLIPS Source Code

(assert (frame dflorian 149 Parameter: ?parameter)))

;*** This rule determines if at least one of the parameters that

;*** failed, failed badly.

(defrule no-parameters-way-away-from-spec

(finished gyro-cal ?test-num)
(?parameter close-to-spec? no)

(test (!= ?test-num 1))

(not (error-code-phase))

(assert (gyro-cal ?test-num at-least-one-parameter away-from-spec)))

;*** If no parameters which failed, failed badly, then cannot

;*** conclude with certainty just one component is at fault.

(defrule gyro-cal-3-bad
(declare (salience -500))
?rg <- (finished gyro-cal 3)

(not (gyro-cal 3 at-least-one-parameter away-from-spec))

(not (error-code-phase))

(retract ?rg)

(assert (gyro-cal 3 inconclusive)))

;*** This rule takes each parameter and identifies the component it

;*** suggests as being faulty.

(defrule suspected-components

?fp <- (failed-parameter ?parameter gyro-cal ?test-num)

?pc <- (?parameter close-to-spec? no)

(?parameter ?component parameter)

(finished gyro-cal ?test-num)

(not (error-code-phase))

(retract ?pc ?fp)

(assert (?component implicated gyro-cal ?test-num)))

;*** If more than one parameter failed badly, and they suggested more

E-18

Appendix E: CLIPS Source Code

** than one component is the problem, run another Cal to try to
;*** narrow it down to one component.

(defrule more-than-one-suspected-component
(declare (salience -50))
?fp <- (failed-parameter no-more gyro-cal ?test-num)
?rg <- (finished gyro-cal ?test-num)
?c I <- (?componentl implicated gyro-cal ?test-num)
?c2 <- (?component2 implicated gyro-cal ?test-num)
(test (neq ?componentl ?component2))
(not (error-code-phase))

(retract ?fp ?rg ?cl ?c2)
(assert (gyro-cal ?test-num inconclusive)))

•;*** Based on the results of a failed Gyro Cal 2, the evidence is

** inconclusive because more than one component is being considered
** as the primary suspect. This occurs when 2 parameters which
** are associated with different components, both failed
** and were not close to the spec. This also occurs if no parameter
** was close to the spec. Gyro Cal 3 should be run to gather more

•;*** information. 2 rules.

(defrule gyro-cal-2-inconclusive
?gc <- (gyro-cal 2 inconclusive)

(not (error-code-phase))
=>

(retract ?gc)
;(printout t t "Evidence was inconclusive. Let Gyro Cal 3 keep running." t)
;(assert (start gyro-cal 3)\
(assert (frame dfloria,.. --

** If after Gryo Cal 2 or 3, there is just one parameter out of
** spec, and it is way out of spec, you have enough evidence to
** suggest a faulty component. This must fire only if the rule

• *** above cannont.

(defrule conclusive-evidence
(declare (salience -100))
?fp <- (failed-parameter no-more gyro-cal ?test-num)

E- 19

Appendix E: CLIPS Source Code

?rg <- (finished gyro-cal ?test-num)
?ci <- (?component implicated gyro-cal ?test-num)
(not (error-code-phase))

(retract ?fp ?rg ?ci)
(assert (faulty ?component)))

;*** If no failed parameters failed badly, run third Cal.

(defrule run-gyro-cal-3
(declare (salience -500))
?fp <- (failed-parameter no-more gyrc cal ?test-num)
?rg <- (finished gyro-cal 2)
(not (gyro-cal 2 at-least-one-parameter away-from-spec))
(not (error-code-phase))

(retract ?fp ?rg)
;(printout t t "Let Gyro Cal 3 keep running." t)
;(printout t t "The failed parameters could correct themselves in this run." t)
;(assert (start gyro-cal 3))
(assert (frame dflorian 151)))

** In Cal 3 if no parameters failed badly, the technicians will
** look for repeatability in the component that the parameters

** suggest is the problem.

** Parameters failing Gyro Cal 3 will be tallied by component.

(defrule parameters-failing-gyro-cal-3
(failed-parameter ?parameter gyro-cal 3)
(?parameter ?component parameter)
(not (error-code-phase))

(bind ?unique-num (gensym))
(assert (suspect ?compo,,nt ?unique-num I)))

** Keeps a running total of how many parameters are providing
** evidence that a component is faulty.

E-20

Appendix E: CLIPS Source Code

(defrule keep-running-total
?s I <- (suspect ?component ?unique-num I ?weight 1)
?s2 <- (suspect ?component ?unique-num2 ?weight2)

(test (neq ?unique-numl ?Nnique-num2))
(not (error-code-phase))

(retract ?sl ?s2)
(bind ?new-weight (+ ?weightl ?weight2))
(bind ?new-unique-num (gensym))
(assert (suspect ?component ?new-unique-num ?new-weight)))

;***4 These facts are needed to tally the times a component is

;*** suspected by the failed parameters.

(deffacts initial-component-count
(suspect x-vm start 0)
(suspect y-vm start 0)
(suspect xy-gyro start 0)
(suspect yz-gyro start 0))

;*** Clean up previous facts if not used.

;(defrule clean-up-suspeAs
(declare (salience -10000))
?sp <- (suspect ?parameter start 0)
(not (error-code-phase))

(retract ?sp))

;* If after Cal 3 you couldn't narrow the suspected components down
;*** to one component or if there were no parameters that failed

,*** badly, this rule will fire. Lists the suspected components in a
;*** single fact which is printed to a KMS frame. The deffacts statement
;*** is needed to start the combination of the facts.

(deffacts start-combining-suspects
(suspect-list))

(defrule gyro-cal-3-inconclusive

E-21

Appendix E: CLIPS Source Code

(gyro-cal 3 inconclusive)
?sc <- (suspect ?component ?unique-num ?total)
?sl <- (suspect-list $?list)

(test (!= ?total 0))
(not (error-code-phase))

(retract ?sc ?sl)
;(printout t t "Suspect component: "?component" Evidence: "?total t)
(assert (suspect-list $?list ?component evidence= ?total)))

;*** This just writes a list of components to a KMS frame.

(defrule print-suspect-list-to-kms-frame
(declare (salience -10000))
?gc <- (gyro-cal 3 inconclusive)
?sl <- (suspect-list $?list)

(retract ?gc ?sl)
(assert (frame dflorian373 List: $?list)))

Master Heading Rules

;*** This is not a timed test. The technician is just waiting for

;* the gyro bias terms to stabilize.

,*** At the beginning and during Master Heading the technician is

;*** asked how long the test has been running and if the bias
;* parameters are stabilizing. The variable ?status can equal
"* "start" or "continue."

(defrule are-bias-parameters-stable?
?sm <- (?status master-heading)
(test (neq ?status determine-fault))
(not (error-code-phase))

;(printout t t "Has BXC, BYC, and BZC stabilized (yes/no)? ")

E-22

Appendix E: CLIPS Source Code

;(assert (master-heading bias-parameters-stable? =(read)))
(assert (frame dflorian 153)))

(defrule how-long-has-master-heading-been-running
?sm <- (?status master-heading)

(master-heading bias-parameters-stable? ?hours)
(test (neq ?status determine-fault))
(not (error-code-phase))

(retract ?sm)
;(printout t t "How long has Master Heading been running (hours)? ")

;(assert (master-heading run-time =(read) hours))
(assert (frame dflorian366)))

;* If the bias parameters are stable and Master Heading has been
;*** rui ning at least 4 hours, then go on to the Nav-Align test.

(defrule master-heading-complete
?mh <- (master-heading run-time ?num-hours hours)
?bt <- (master-heading bias-parameters- stable? yes)

(test (> ?num-hours 3.9))
(not (error-code-phase))

(retract ?mh ?bt)
;(printout t t "Apply bias. TCI 0100. TCI 0101." t)
;(printout t t "Master Heading is complete. Start Nav Align." t)
;(assert (start mode-a))
(assert (frame dflorian 154)))

;* If the bias parameters are stable and the test has not been
;* running at least 4 hours; or if the bias terms are unstable and

;*** the test has been running less than 6.5 hours, continue the test.

(defrule continue-master-heading
?mh <- (master-heading run-time ?num-hours hours)
?bt <- (master-heading bias-parameters-stable? ?status)
(test (or (< ?num-hours 4)

(and (eq ?status no)
(< ?num-hours 6.5))))

E-23

Appendix E: CLIPS Source Code

(not (error-code-phase))

(retract ?mh ?bt)
;(printout t t "Continue Master Heading." t)

;(assert (continue master-heading))
(assert (frame dflorian 155)))

;*** If bias parameters are not stable and the test has been running

;*** at least 6.5 hours, then a problem exists in either a velocity
;*** meteroragyro.

(defrule stop-master-heading-test
?mh <- (master-heading run-time ?nur nours hours)
?bt <- (master-heading bias-parameters-stable? no)

(test (>= ?num-hours 6.5))
(not (error-code-phase))

(retract ?mh ?bt)
;(printout t t "Stop Master Heading test." t)
;(assert (determine-fault master-heading))
(assert (frame dflorian 156)))

;*** If the bias parameters do not stabilize either the velocity
;**'* parameters have increased suddenly (i.e., X'DIF >= .05 for at
;*** least half hour) or there was a gradual change in the bias
S*** parameters.

(defrule determine-fault-in-master-heading
?pf <- (determine-fault master-heading)

(not (error-code-phase))

(retract ?pf)
;(printout t t "Was their a sudden change in velocity parameters (VDIF)")
;(printout t t "or a gradual drift in any of the bias parameters (BXC, BYC, BZC)

(sudden-change or gradual-drift)? ")
;(assert (problem-in master-heading is =(read)))
(assert (frame dflorian 157)))

** If a sudden change in the velocity parameters occurred, find out
•.*** which velocity parameters. The sudden change rules are also used

E-24

Appendix E: CLIPS Source Code

** by the Nav section.

(defrule check-velocity-parameters
?pi <- (problem-in ?test is sudden-change)

(test (or (eq ?test master-heading)
(eq ?test nav)))

(not (error-code-phase))

(retract ?pi)
;(printout t t "Was the change in the n-s, e-w, or other? ")
;(assert (sudden-change =(read)))
(assert (frame dflorian 158)))

** If the sudden change was in the North-South direction, then
** there is a problem in the x velocity meter.

(defrule sudden-change-in-n-s-velocity
?sc <- (sudden-change n-s)

(not (error-code-phase))

(retract ?sc)
(assert (faulty x-vm)))

;*** If the sudden change was in the East-West direction, then

** there is a proolem in the y velocity meter.

(defrule sudden-change-in-e-w-velocity
?sc <- (sudden-change e-w)

(not (error-code-phase))

(retract ?sc)
(assert (faulty y-vm)))

** If the sudden change was not isolated in only one direction,
** rerun Shim-Cal and look for marginal acceptance of parameters.

;*** The way Shim-Cal rules are written, terms that are too close to

;*** the spec fail that Shim-Cal run.

(defrule sudden-change-in-other-velocity

E-25

Appendix E: CLIPS Source Code

?sc <- (sudden-change other)
(not (error-code-phase))

(retract ?sc)
;(printout t t "Rerun Shim-Cal and look for marginal acceptance of parameters." t)
;(assert (start mod.: a))
(assert (frame dflorian 159)))

** If a gradual change in the bias parameters, then a problem exists

in one of the gyros.

(defrule check-bias-parameters
?pi <- (problem-in master-heading is gradual-drift)
(not (error-code-phase))

(retract ?pi)
;(printout t t "Was the drift in bxL, byc. bzc, bxc-and-byc, or other? ")
;(assert (gradual-drift =(read)))
(assert (frame dflorian 160)))

** If the gradual drift was in BXC or BYC parameters, then there is
** a problem in the x gyro.

(defrule gradual-drift-in-bxc-or-byc
?gd <- (gradual-drift ?parameter)

(test (or (eq ?parameter bxc)
(eq ?parameter byc)
(eq ?parameter bxc-and-byc)))

(not (error-code-phase))

(retract ?gd)
(assert (faulty xy-gyro)))

** If the gradual drift was in the BZC parameter, then there is a
** problem in the z gyro.

(defruie gradual-drift-in-bzc
?gd <- (gradual-drift bzc)

(not (error-code-phase))

E-26

Appendix E: CLIPS Source Code

(retract ?gd)
(assert (faulty yz-gyro)))

;* If the gradual drift is in some other combination of parameters
;* than the above 2 rules than check the axis headings.

(defrule gradual-drift- in-other
?gd <- (gradual-drift other)
(not (error-code-phase))

(retract ?gd)
;(printout t t "Examine the roll, pitch, and azimuth synchro outputs from the alarm panel."

t)

;(printout t t "Is any one axis off heading more than the others (roll-pitch, pitch-azimuth,
none)? ")

;(assert (axis-off-heading =(read)))
(assert (frame dflorian 161)))

;*** If the roll-pitch axis is off heading, then theie is a problem
;*** with the xy-gyro

(defrule roll-pitch-axis-off
?ao <- (axis-off-heading roll-pitch)
(r 'error-code-phase))

(retract ?ao)
(assert (faulty xy-gyro)))

;*** If the pitch-azimuth axis is off heading, then there is a
;*** problem with the yz-gyro

(defrule pitch-azimuth-axis-off
?ao <- (axis-off-heading pitch-azimuth)
(not (erroi-code-phase))

(retract ?ao)
(assert (faulty yz-gyro)))

;*** If neither axis is off heading more than the other, then rerun

E-27

Appendix E: CLIPS Source Code

;*** Gyro-Cal and look for bias shifts and a bad case rotation motor.

(defrule neither-axis-off-more
?ao <- (axis-off-heading none)

(not (error-code-phase))

(retract ?ao)
;(printout t t "Rerun Gyro-Cal. Look for bia- shifts or a bad case rotation motor." t)
;(assert (start mode-a))
(assert (frame dflorian 162)))

Navigation Alignment Rules

;*** Very little troubleshooting is done during this test.

;* It was very hard to get a definition or an example of when a
,*** this test would be stopped before it ran its course. The
;*** technician is plotting a RMS point, a latitude point, and a
;*** longitude point each hour.

;*** Get the rate of the RMS change and the number of hours that
;* Nay-Align has been running.

(defrule get-rms-rate-change
?sn <- (?status nav-align)

(nav-align run-time ?num hours)
(not (error-code-phase))

(retract ?sn)
;(printout t t "Has the rate of RMS change been normal, exceptional, or drastic? ")

;(assert (nay-align rms-rate-change =(read)))
(assert (frame dflorian367)))

(defrule how-long-has-nay align-been-running
?sn <- (?status nav-align)

(not (error-code-phase))

E-28

Appendix E: CLIPS Source Code

;(printout t t "How long has Nav-Align been running? ")

;(assert (nav-align run-time =(read) hours))
(assert (frame dflorian 163)))

Continue running Nav-Align if less than 7 hours have been run,
if less than 12 hours and rms rate of change is not drastic, or
if greater than 12 hours and rms rate of change is normal.

(defrule continue-nav-align
?na <- (nav-align run-time ?num-hours hours)
?rm <- (nav-align rms-rate-change ?change)
(test (or (< ?num-hours 7)

(and (< ?num-hours 12)
(neq ?change drastic))

(and (>= ?num-hours 12)
(< ?num-hours 16)
(eq ?change normal))))

(not (error-code-phase))

(retract ?na ?rm)
;(printout t t "Continue Nav-Align." t)

;(assert (continue nav-align))
(assert (frame dflorian 164)))

If the rate of rms change is drastic, Nav-Align should be

stopped and Master Heading should be run again. This does not
happen very much. Let Nav-Align run at least 7 hours.

(defrule rerun-master-heading
?na <- (nav-align run-time ?num-hours hours)
?rm <- (nav-align rms-rate-change drastic)

(test (>= ?num-hours 7))
(not (error-code-phase))

(retract ?na ?rm)
;(printout t t "Stop Nav-Align and rerun Master Heading." t)

;(assert (start mode-,

E-29

Appendix E: CLIPS Source Code

(assert (frame dflorian 165)))

;***~ If RMS is looking real good (i.e., lat and long are correcting),

;*** the operator can run an extended Na, -Align. This extends the

,*** length from 16 hours to 30 hours and it can take the place of a

;* test. This saves 14 hours of testing. It should be initiated

;*** between the 12th and 15th hours. It will not take affect Ln the

;* 16th hour.

(defrule run-extended-nav-align

?na <- (nav-align rur.-time ?num-hours hours)

?rm <- (nav-align rms-rate-changc exceptional)

(test (and (>= ?num-hours 12)

(<= ?num-hours 15)))

(not (error-code-phase))

(retract ?na ?rm)

;(printout t t "Initiate an Extended Nay-Align (TCI 0732)." t)

(assert (running nay 1))

(assert (nay rms good))

;(assert (nay run-time ?num-hours hours))

(assert (frame dflorian 166 Hours: ?num-hours)))

;* If RMS looked normal but not good enough to run an extended

;***~ nav-align before nay-align finished, start Nav test. Nav will

;*** automatically start after Nay-Align finishes unless the
,'*** operator intervenes.

(defrule nay-align-complete

?na <- (nay-align run-time 16 hours)

?rm <- (nay-align rms-rate-change ?change)

(test (or (eq ?change normal)

(eq ?change exceptional)))
(not (error-code-phase))

(retract ?na ?rm)

;(printout t t "IMU had a good Nav-Align. Let Nav test run." t)

;(assert (start mode-a))

(assert (frame dflorian 167)))

E-30

Appendix E: CLIPS Source Code

Navigation Performance Rules

;*** During the Nav run, the technician will be asked if the RMS is

;*** out of spec or good and how long the test has been running. The

;*** variable ?status will either be equal to "start" or "continue."

(defrule get-rms-status

?sn <- (?status nay ?test-num)

(na. run tim .c ?h"urs hours)

(test (and (neq ?status determine-fault)

(neq ?status running)))
(not (error-code-phase))

(retract ?sn)

;(printout t t "Is the RMS out-of-spec or good? ")

;(assert (nay rms =(read)))
(assert (running nav ?test-num))

(assert (frame dflorian368)))

(defrule how-long-has-nav-been-running

(?status nay ?test-num)

(test (and (neq ?status determine-fault)

(neq ?status running)))

(not (error-code-phase))

;(printout t t "How long has Nav" ?test-num "been running (hours)? ")

;(assert (nay run-time =(read) hours))
(assert (frame dflorian168 Test: ?test-num)))

;*** Continue current Nay run. RMS is not out of spec.

(defrule continue-current-nav-test

?nr <- (nay run-time ?num-hours hours)

?rm <- (nav rms good)

?ts <- (running nay ?test-num)

E-31

Appendix E: CLIPS Source Code

(test (< ?num-hours 30))
(not (error-code-phase))

(retract ?nr ?rm ?ts)
;(printout t t "Continue running Nav" ?test-num "." t)

;(assert (continue nav ?test-num))

(assert (frame dflorianl69 T:st: ?test-num)))

I** f the RMS is within the spec for 30 hours, then the IMU passed

• *** the Nay test.

(defrule imu-passed-nav

?nr <- (nav run-time 30 hours)

?rm <- (nav rmn good)
?ts <- (running nav ?test-num)

(not (error-code-phase))

(retract ?nr ?rm ?ts)
;(printout t t "Enter TCI 0303 and TCI 0057. IMU passed Nav." t)

;(assert (start mode-a))

(assert (frame dflorian 170)))

** Perform a Nav reset if it is the first run and the test has not

** been running 25 hours. This automatically begins a 2nd Nav run.

;""** Usually it takes a few hours for a reset to occur after the

** operator has requested it.

(defrule perform-nay-reset

?nr <- (nav run-time ?num-hours hours)

?rm <- (nay rms out-of-spec)
?ts <- (running nay 1)

(test (<= ?num-hours 25))

(not (error-code-phase))

(retract ?nr ?rm ?ts)
;(printout t t "Perform a Nay reset (TCI 0021)." t)

;(assert (start nav 2))
(assert (frame dflorian 171)))

** If after the 25th hour in runs one or two whe, the RMS gv_ -ut

E-32

Appendix E: CLIPS Source Code

;*** of spec, let the run complete and start the next run. Usually,
** a reset will not have enough time to take effect.

(defrule let-next-nav-test-start
?nr <- (nav run-time ?num-hours hours)
?rm <- (nav rms out-of-spec)

?ts <- (running nav ?test-num)
(test (and (!= ?test-num 3)

(> ?num-hours 25)))
(not (error-code-phase))

(retract ?nr ?rm ?ts)
;(printout t t "Continue into next Nav test. Start plotting then." t)

;(assert (start nav =(+ ?test-num 1)))
(assert (frame dflorianl72 Test: =(+ ?test-num 1))))

** Stop the Nav run and diagnose the fault. If the RMS is out of
** spec at any time in the 3rd run or after the 25th hour of the
** 2nd run. stop nav ard begin to trcableshoot.

(defrule stop-nav-test
?nr <- (nay run-time ?num-hours hours)
?rm <- (nay rms out-of-spec)
?ts <- (running nay ?test-num)

(test (or (eq ?test-num 3)
(and (eq ?test-num 2)

(<= ?num-hours 25))))
(not (error-code-phase))

(retract ?nr ?rm ?ts)
;(printout t t "Stop Nav test." t)
;(assert (determine-fault nay))
(assert (frame dflorian173)))

** If the RMS is out of spec either the velocity parameters
** have increased suddenly (i.e., VDIF >= .05 tor at leas! ha-f

** hour) or there was a gradual change in lat or long.

(defrule determine-fault-in-nav

E-33

Appendix E: CLIPS Source Code

?pf <- (determine-fau-lt nav)

(not (error-code-phase))

(retract '!pf)
;(printout t t "Was their a sudden change in velocity parameters (VDIF)")

;(printout t t "or a gradual drift in lat, long, or both (sudden-change or gradual-drift)? "
;(assert (problem-in nav is =(read)))

(assert (frame dflorian 174)))

;*** If a sudden change in the velocity parameters occurred, use the
,*** rules found in Master Heading.

,*** If a gradual change in lat or long, then a problem exists in
;*** one of the gyros.

(defrule what-effected-rns

?pi <- (problem-in nav is gradual-drift)

(not (error-code-phase))

(retract ?pi)
;(printout t t "What caused the RMS to go out of spec (lat, long, both)? ")

;(assert (gradual-drift =(read)))

(assert (frame dflorianl75)))

;***' If the gradual drift was in longitude, then there is a
;*** problem in the xy gyro.

(defrule gradual-drift-longitude
?gd <- (gradual-drift longitude)

(not (error-code-phase))

(retract ?gd)

(assert (faulty xy-gyro)))

;* ** If the gradual drift was in latitude, then there is a

;*** problem in the yz gyro.

fde fr-z'e arvival -,-'Ef.-l;atji ~d

?gd < (gradual-drift latitude)

E-34

Appendix E: CLIPS Source Code

(not (error-code-phase))

(retract ?gd)
(assert (faulty yz-gyro)))

;*** If the gradual drift is in both lat and long, find out in what
;*** direction.

(defrule gradual-drift-lat-and-long
?gd <- (gradual-drift both)

(not (error-code-phase))

(retract ?gd)
;(printout t t "Did latitude and longitude BOTH drift in the positive, negative, or other? ")

;(assert (lat-long-drift =(read)))
(assert (frame dflorian 176)))

;* If both latitude and longitude drifted in the positive
,*** direction, then there is a problem with the xy gyro.

(defrule positive-lat-long-drift
?l1 <- (lat-long-drift positive)

(not (error-code-phase))

(retract ?11)
(assert (faulty xy-gyro)))

;***~ If latitude and longitude both drifted in the negative

,*** direction, there is a problem with the yz gyro.

(defrule negative-lat-long-drift
?11 <- (lat-long-drift negative)

(not (error-code-phase))

(retract ?1M)
(assert (faulty yz-gyro)))

** If latitude and longitude drifted in different directions, use

,*** the Maste; t-zading rules concerning axis off heading.

E-35

Appendix E: CLIPS Source Code

(defrule lat-long-drift-different
?M <- (lat-long-drift other)

(not (error-code-phase))

(retract ?ll)
(assert (gradual-drift other)))

Identifies Faulty Component

(defrule print-faulty-component
?fc <- (faulty ?component)

(retract ?fc)
;(printout t t "Recommend the " ?component" be replaced." t)

(assert (frame dflorian 177 Component: ?component)))

;*** Facts to Relate Parameter to Component

(deffacts x-vm-parameters
(kx x-vm parameter)
(kxd x-vm parameter)
(ax x-vm parameter)
(axd x-vm parameter)
(kxy x-vm parameter)
(kxyd x-vm parameter))

(deffacts y-vm-parameters
(ky y-vm parameter)
(kyd y-vm parameter)
(ay y-vm parameter)
(ayd y-vm parameter)

E-36

Appendix E: CLIPS Source Code

(kyx y-vm parameter)
(kyxd y-vm parameter)
(kyz y-vm parameter)
(kyzd y-vn; parameter))

(deffacts xy-gyro-pararr., ters
(sx xy-gyro parameter
(sxd xy-gyro parameter)
(syx xy-gyro parameter)
(syxd xy-gyro parameter)
(szx xy-gyro parameter)
(szxd xy-gyro parameter)
(sxy xy-gyro parameter)
(sxyd xy-gyro parameter)
(sxz xy-gyro parameter)
(sxzd xy-gyro parameter)
(bx xy-gyro parameter)
(bxd xy-gyro parameter))

(deffacts yz-gyro-paranieters
(sz yz-gyro parameter)
(szd yz-gyro parameter)
(bz yz-gyro parameter)
(bzd yz-gyro parameter)
(sy yz-gyro parameter)
(syd yz-gyro parameter)
(by yz-gyro parameter)
(byd yz-gyro parameter)
(szy yz-gyro parameter)
(szyd yz-gyro parameter)
(syz yz-gyro parameter)
(syzd yz-gyro parameter))

** Rules to communicate with KMS. The first rule will display
;*** one frame in Large mode. The second rule will display two
;* ** frames on the screen. The third rule will display one

** frame in Large mode and also change a value of an attribute
;*** on that frame.

E-37

Appendix E: CLIPS Source Code

(defrule write-one-frame-name "writes framename to a file"
?fn <- (frame ?framename)

(retract ?fn)
(open "clipsinfo" outfilel "w")
(printout outfile I ?framename)
(close)
(assert (kms can read file)))

(defrule write-two-frame-names "writes two framenames to a file"

?fn <- (frame ?frame 1 ?frame2)

(retract ?fn)
(open "clipsinfo" outfilel "w")
(printout outfile 1 ?frame I t)
(printout outfile I ?frame2)
(close)
(assert (kms can read file)))

(defrule write-one-frame-name-change-value "writes one framename to a file and changes

an item value"
?fn <- (frame ?frame l ?item ?value $?more-values)

(retract ?fn)
(open "clipsinfo" outfile I "w")
(printout outfile 1 ?frame I t)
(printout outfilel ?item t)
(bind $?stuff (mv-append ?value $?more-values))

(printout outfilel $?stuff)
(close)
(assert (kms can read file)))

(defrule ok-for-kms-to-read
?kc <- (kms can read file)

(retract ?kc)

(open "ok_kms" outfile2 "w")
(printout outfile2 1)

(close)
(kms-filejready)

E-38

Appendix E: CLIPS Source Code

(getikms-info))

;*** Mode A Error Code rules.

** Error Code Phase Rules written by Florian

;*** This rule obtains the error message from the user.

(defrule get-error-message
?se <- (start error-code-phase)

(retract ?se)
(printout t t "Enter error message: ")

(assert (frame dflorian 16)))

** Talking to Jim Neri, he said only a few error messages

** either stop the current test automatically, or would
** cause him to manually stop the test. This rule takes this
** into account and provides -he transition to/from the en-or

** code phase (modified Skinner's code) and parameter phase.

(defrule stop-parameter-phase
(error-message ?error)
(test (or (eq ?error velocity-unreasonable)

(eq ?error vt-greater-than-2-knots)
(eq ?error imu-major)
(eq ?error no-input-3-axes)
(eq ?error no-input-az)
(eq ?error no-input-pitch)
(eq ?error no-input-roll)
(eq ?error automatic-shutdown)
(eq ?error imu-o-temp)
(eq ?error excess-angle)
(eq ?error servo-disable)
(eq ?error major-reset-fault)

E-39

Appendix E: CLIPS Source Code

(eq ?error minor-reset-fault)
(eq ?error z-stab)
(eq ?error plat-stab-abort)
(eq ?error gyro-hot)
(eq ?error vt-vr-greater-than-3-knots)))

(assert (error-code-phase)))

(defrule continue-parameter-phase
?em <- (error-message ?error)
(test (and (neq ?error velocity-unreasonable)

(neq ?error vt-greater-than-2-knots)
(neq ?error imu-major)
(neq ?error no-input-3-axes)
(neq ?error no-input-az)
(neq ?error no-input-pitch)
(neq ?error no-input-roll)
(neq ?error automatic-shutdown)
(neq ?error imu-o-temp)
(neq ?error excess-angle)
(neq ?error servo-disable)
(neq ?error major-reset-fault)
(neq ?error minor-reset-fault)
(neq ?error z-stab)
(neq ?error plat-stab-abort)
(neq ?error gyro-hot)
(neq ?error vt-vr-greater-than-3-knots)))

(retract ?em)
;(printout t t "Disregard tis error code.")
;(printout t t "Wait for test to end and look at calibration parameters.")
(assert (frame dflorian385)))

• The following rules are converted Capt Skinner rules. Only
•** the error messages which either automatically stop the test
• * in progess, or those which are severe enough for the
• * technician to manually stop the test are included here.
• * Capt Skinner's rules for the other error messages are
• * commented out and included at the end this code.

E-40

Appendix E: CLIPS Source Code

(defrule ruleOO1 "ruleOOI"
?ni <- (not-indication-of-fault)

(error-code-phase)

(assert (frame dfloran27)))

(defrule rule005 "rule005"
?ct <- (contact te)

(error-code-phase)

(assert (frame dflorian31)))

(dfrule rule007 "rule007"
?mt <- (move to mode-b)

(error-code-phase)

(assert (frame dflorian33)))

(defrule ruleO08 "ruleOO8"
?ff <- (fault-found ?component continue-testing)

?fc <- (faulty-component ?component)

(error-code-phase)

(assert (frame dflorian34 Component: ?component)))

(defrule ruleOO9 "rule009"
?re <- (rare-error-message)

(error-code-phase)

(assert (frame dflorian35)))

;** Of these error messages, only imu-o-temp, major-reset-fault,
;* and vt-vr-greater-than-3-knots are used in my project. The
;* rest of them does not cause the current Mode A test to stop.

** They were left in to ,eep the rule as Capt Skinner wrote it.

(defrule rule013 "rule0l3"
?em <- (error -nessage ?error)
(test (or (eq ?error imu-o-load)

E-41

Appendix E: CLIPS Source Code

(eq ?error imu-o-temp)
(eq ?error dcc-o-load-o-temp)
(eq ?error dcc-o-temp)
(eq ?error comp- tie-in-sw-on)
(eq ?error i-c-fault-inhb-enab)
(eq ?error i-c-data-loop-fault)
(eq ?error i-c-fault-cont)
(eq ?error in-parity-test-inhb-enab)
(eq ?error out- word-par-inh b-enab)
(eq ?error ourput-word-parity-cont)
(eq ?error major-re se t-fault)
(eq ?error minor-reset-fault)
(eq ?error rninor-fault-cont)
(eq ?error both -vm- precou nter-failIure)
(eq ?error yn- bite- failure)
(eq ?error vt- vr- greater- than -3-knots)
(eq ?error minisins-vel-dif-exceeds-liit)
(eq ?error mi nisin s-pos -dif- exceeds- limit)
(eq "error parity-test- 1 -no-go)
(eq ?error parity-test-2-no-go)
(eq ?error parity-test- 3-no-go)
(eq ?error put-intercom-test-no-go)
(eq ?error seq-cnt-no-compare))

(error-code-phase)

(assert (rare-error- me ssage)))

;** Tis group of rules diagnoses the following four error
;**messages: no.input.3.axes, no.input.az, no.input.pitch,

, and no.input.roll.

(defrule ruleOl4 "ruleOl4"
?em <- (error-message ?error)
(test (or (eq ?error no-input- 3-axes)

(eq ?error no-input-az)
(eq ?error no-input-pitc')
(eq ?error no-input-roll))

(error-code-phase)

F-42

Appendix E: CLIPS Source Code

(assert (check resolver-sigal-at-ncc)))

(defrule attribute-resolver-outp-t-at-ncc-go,'i "rules: 15, 16"
?cr <- (check resolver-signal-at-ncc)

(error-code-phase)

(assert (frame dflorianl4 dflorian127)))

(defrule ruleO15 "rule015"
?cr <- (check resolver-signal-at-ncc)

?rs <- (resolver-signal-at-ncc good)

(error-code-Dhase)

(assert (contact te)))

(defrule rule016
?cr <- (check resolver-signal-at-ncc)

?rs <- (resolver-signal-at-ncc bad)
(error-code-phase)

(assert (check resolver-signal-at-imu)))

(defrule attribute-imu-resolver-signal-good "rules: 17, 18"
?cr <- (check resolver- signal-at-imu)

(error-code-phase)

(assert (frame dflorian36 dflorian 124)))

(defrule ruleO17 "ruleO17"
?cr <- (check resolver-signal-at-imu)
?ir <- (imu-resolver-signal good)

(error-code-phase)

(assert (check resolver-signal-on-different-station)))

(defrule ruleO18 "ruleO18"
?cr <- (check resolver-signal-at-imu)
?ir <- (imu-resolver-signal bad)

(error-code-phase)

E-43

Appendix E: CLIPS Source Code

(assert (check resolver-excitation)))

(defrule attribute-resolver-signal-on-different-station-good "rules: 19, 20"
?cr <- (check resolver-signal-on-different-station)
(error-code-phase)

(assert (frame dflorian37 dflorian 124)))

(defrule rule019 "ruleO19"
?cr <- (check resolver-signal-on-different- station)
?rs <- (resolver-signal-on-different-station good)
(error-code-phase)

(assert (contact te)))

(defrule rule02O "rule020"
?cr <- (check resolver-signal-on-different-station)
?rs <- (resolver-signal-on-different- station bad)
(error-code-phase)

(assert (check resolver-excitation)))

(defrule attribute-resolver-excitation-good "rules: 21, 22"
?cr <- (check resolver-excitation)

(error-code-phase)
=>

(assert (frame dflorian38 dflorian127)))

(defrule ruleO21 "rule02 1"
?cr <- (check resolver-excitation)

?re <- (resolver-excitation good)
(error-code-phase)

(assert (faulty reso,!ver)))

(defrule ruleO22 "rule022"
?cr <- (check resolver-excitation)

?re <- (resolver-excitation bad)

(error-code-phase)

E-44

Appendix E: CLIPS Source Code

(assert (faulty excitation-mrodule)))

SThis group of rules troubleshoots; the following two error

*messages: velocity.unreasonable and

,'*vt.greater. than.2.knots. In addition, this section uses
Sthe routine Check Gyro Circuit, which starts with rule 043.

(defrule attribute-test "rules: 30-32'
?em <- (error-message ?error)
(test (or (eq '!error velocity-unreasonable)

(eq ?error vt-greater-than-2-knots))
(error-code-phase)

(assert (frame dflorian45)))

(defrule ruleO3O "ruleO3O"
?em <- (error-message ?error)
?gt <- (gyro-cal test)
(test (or (eq ?error velocity-unreasonable)

(eq ?error vt-greater-than-2-knots))
(error-code-phase)

(assert (check position)))

(defrule ruleO3 I "rule31 1"
?em <- (error-message ?error)
?nt <z- (navigate test)
(test (or (eq ?error velocity-unreasonable)

(eq ?error vt-greater-than-2-knots))
(error-code-phase)

(assert (check velocity-direcion)))

(defrule ruleO32 "ruleO32"
?em <- (error-mfessage ?error)
?ts <- (?test test)
(test (or (eq ?error velocity-unreasonable)

(eq ?error vt-greater-than-2-knots))

E-45

Appendix E: CLIPS Source Code

(test (or (eq ?test shim-cal)
(eq ?test nav-align)
(eq ?test master-heading)))

(error-code-phase)

(assert (frame dflorian46)))

(defrule attribute-north-south-or-east-west "rules: 33-38"
?cp <- (check ?what)
(test (or (eq ?what position)

(eq '!what velocity-direction)))
(error-code-phase)

(assert (frame dflorian47 dflorianl27)))

(defrule rule033 "rule033"
?cp <- (check position)

?ns <- (north-south-or-east-west ?dir)
(test (or (eq ?dir east-west)

(eq ?dir north-south)))
(error-code-phase)

(assert (wait-for platform-to-slew)))

(defrule attribute-velocities-changed-directions "rules: 34, 35"
?wf <- (wait-for platform-to-slew)

(error-code-phase)

(assert (frame dflorian48 dflorian 124)))

(defrule ruleO34 "rule034"
?wf <- (wait-for platform-to-slew)

?vc <- (velocities-changed-directions? yes)

(error-code-phase)

(assert (faulty corre.qponding-velocity-meter)))

;*** Rules 35-38 were used to transition to deep reasoning. The

;* following four rules were written by Florian using a

;*** decision tree diagram developed by Skinner and Newark.

E-46

Appendix E: CLIPS Source Code

(defrule velocities-did-not-change-direction
?wf <- (wait-for platform-to-slew)
?vc <- (velocities-changed-directions? no)

(error-code-phase)

(assert (check gyro-circuit)))

(defrule velocities-other-check-position
?cp <- (check position)
?ns <- (north-south-or-east-west other)

(error-code-phase)

(assert (check gyro-circuit)))

(defrule check-direction-velocities-not-other
?cp <- (check velocity-direction)

?ns <- (north-south-or-east-west ?dir)
(test (or (eq ?dir east-west)

(eq ?dir north-south)))
(error-code-phase)

(assert (check vm-signal-on-ncc)))

(defrule check-direction-velocities-other
?cp <- (check velocity-direction)
?ns <- (north-south-or-east-west other)

(error-code-phase)

(assert (check-for level-platform)))

(defrule attribute-vm-signal-on-ncc-good "rules: 84, 85"
?cv <- (check vm-signal-on-ncc)

(error-code-phase)

(assert (frame dflorian73 dflorian127)))

;* Next 2 rules were originally used by Skinner for different
;* error messages. I could use them heie.

E-47

Appendix E: CLIPS Source Code

(defrule rule084 "ruk.084"
?cv <- (check vm-signal-on-ncc)

?vm <- (vm-signal-on-ncc good)

(error-code-phase)

(assert (move to mode-b)))

(defrule rule085 "rule085"
?cv <- (check vm-signal-on-ncc)

?vm <- (vm-signal-on-ncc bad)
;?sv <- (suspect-vm ?suspect)

(error-code-phase)

(assert (faulty corresponding-velocity-meter)))

(defrule attribute-azimuth.equal-zero "rules: 39, 41'
?cf <- (check-for level-platform)

(error-code-phase)

(assert (frame dflorian49 dflorian 124)))

(defrule platform-is-level
?cp <- (check-for level-platform)
?ae <- (azimuth-equal-zero? yes)

(error-code-phase)

(assert (check gyro-circuit)))

(defrule rule039 "rule039"
?cf <- (check-for level-platform)

?ae <- (azimuth-equal-zero? no)

(error-code-phase)

(assert (check velocity-meter)))

(defrule attribute-faulty-velocity-meter "rules: 40, 42"

?cv <- (check velocity-meter)

(error-code-phase)

E-48

Appendix E: CLIPS Source Code

(assert (frame dflorian5l dflorianl27)))

(defrule ruleO4O "rule040"
?cv <- (check velocity-meter)

?fv <- (faulty-velocity-meter? yes)

(error-code-phase)

(assert (faulty corresponding-velocity-meter)))

(defrule ruleO42 "ruleO42"

?cv <- (check velocity-meter)
?fv <- (faulty-velocity-meter? no)

(error-code-phase)

(assert (check gyro-circuit)))

** CHECK GYRO CIRCUIT ROUTINE
** This routine is used for several different error messages

** including velocity unreasonable, vt. greater than 2 knots,
** imu major, and plat stab abort.

(defrule check-g yro-circuit
?cg <- (check gyro-circuit)

(assert (frame dflorian383 dflorian 124)))

(defrule ruleO43 "rule043"
?cg <- (check gym-circuit)

?sc <- (speed-control-signal good)

(error-code-phase)

(assert (check gyro-run-voltage)))

(defrule attribute-gyro-run-voltage-good "rules: 44, 51"
?cg <- (check gyro-run-voltage)

(error-code-phase)

(assert (frame dflorian52 dflorian 127)))

E-49

Appendix E: CLIPS Source Code

(defrule ruleO44 "ruleO44"
?cg <- (check gyro-run-voltage)
?gr <- (gyro-run-voltage good)
(error-code-phase)

(assert (check pick-off-signals)))

(defrule attribute-pick-off-signals-good "rules: 45, 46"
?cp <- (check pick-off- signals)
(error-code-phase)

(assert (frame dflorian53 dfiorian 124)))

(defrule ruleO45 "ruleO45"
?cp <- (check pick-off- signals)
?ps <- (pick-off- signals good)
(error-code-phase)

(assert (check pick-off-signals-whiie-gyros-not-run rnhg)))

(defruile ruleO46 "ruleO46"
?cp <- (check pick-off- signals)
?ps <- (pick-off- signals bad)
(error-code-phase)

(assert (faulty corresponding-gyro)))

(defrule attribute-pick-off-signals-while-gyros-not-running-good "rules: 47, 48"
?cp <- (check pick-off-signals-while-gyros-not-running)
(error-code-phase)

(assert (frame dflorian54 dflorian 127)))

(defrule ruleO47 "ruleO47"
?cp <- (check pick-off-signals-while-gyros-not-running)
?ps <- (pick-off-signals-while-gyros-not-running bad)

(error-code-phase)

(assert (faulty corresponding-gyro)))

E-50

Appendix E: CLIPS Source Code

(defrule ruleO48 "ruleO48"
?cp <- (check pick-off-signal s-while-gyros-not-running)
?ps <- (pick-off-signals-while-gyros-not-running good)
(error-code-phase)

(assert (monitor speed-control-for-bl4-and-up)))

(defrule attribute-speed-control-for-b 14-and-up-good "rules: 49, 50"
?ms <- (monitor speed-control-for-b14-and-up)

(error-code-phase)

(assert (frame dflorian55 dflorian 124)))

(defrule ruleO49 "ruleO49"
?ms <- (monitor speed-control-for-b 14-and-up)
?sc <- (speed-control-for-b 14-and-up good)

(error-code-phase)

(assert (run next-test)))

(defrule rule05O "rule050"
?ms <- (monitor speed-control-for-b 14-and-up)
?sc <- (speed-control-for-b14-and-up bad)

(error-code-phase)

(assert (faulty corresponding-gyro)))

(defrule rule051 "rule05 1"
?cg <- (check gyro-run-voltage)

?gr <- (gyro-run-voltage bad)

(error-code-phase)

(assert (interchange psl-and-ps2)))

(defrule attribute-problem-follows-power-supply-card "rules: 52, 53"
?ip <- (interchange psl-and-ps2)

(error-code-phase)

(assert (frame dflorian56)))

E-51

Appendix E: CLIPS Source Code

(defrule rule052 "rule052"
?ip <- (interchange psl-and-ps2)

?pf <- (problem-follows-power-supply-card? yes)

(error-code-phase)

(assert (faulty corresponding-power-supply-card)))

(defrule ruleO53 "rule053"
?ip <- (interchange psl-and-ps2)

?pf <- (problem-follows-power-supply-card? no)

(error-code-phase)

(assert (faulty corresponding-gryo)))

(defrule rule054 "rule054"
?cg <- (check gyro-circuit)

?sc <- (speed-control-signal bad)

(error-code-phase)

(assert (interchange speed-control-cards)))

(defrule problem-follows-speed-control-cards
?is <- (interchange speed-control-cards)

(assert (frame dflorian384)))

(defrule rule055 "rule055"
?is <- (interchange speed-control-cards)

?pf <- (problem-follows-speed-control-card? no)

(error-code-phase)

(assert (faulty corresponding-gyro)))

(defrule ruleO56 "ruleO56"
?is <- (interchange speed-control-cards)

?pf <- (problem-follows-speed-control-card? yes)

(error-code-phase)

E-52

Appendix E: CLIPS Source Code

(assert (faulty corresponding-speed-card)))

(defrule attribute-next-test-good "rules: 57, 58"
?m <- (run next-test)

(error-code-phase)

(assert (frame dflorian57)))

(defrule rule057 "rule057"
?rn <- (run next-test)

?nt <- (next-test bad)

(error-code-phase)

(assert (check speed-stability)))

(defrule rule058 "rule058"
?m <- (run next-test)
?nt <- (next-test good)

(error-code-phase)

(assert (run scorsby-test)))

(defrule attribute-scorsby-good "rules: 59, 60"
?rs <- (run scorsby-test)

(error-code-phase)

(assert (frame dflorian59)))

(defrule rule059 "rule059"
?rs <- (run scorsby-test)

?st <- (scorsby-test bad)

(error-code-phase)

(assert (check speed-stability)))

(defrule ruleO6O "rule060"
?rs <- (run scorsby-test)

?st <- (scorsby-test good)

(error-code-phase)

E-53

Appendix E: CLIPS Source Code

(assert (frame dflorian6O)))

** This group of rules corresponds to an imu major error

** message. This section also uses the Check Gyro Circuit
** Routine which starts with rule 043.

(dcfrule attribute-previous-imu-major "rules: 61, 62"
?em <- (error-message imu-major)

(error-code-phase)

(assert (frame dflorian6l)))

(defrule rule061 "ruleO61"
?em <- (error-message imu-major)

?pi <- (previous-imu-major? no)

(error-code-phase)

(assert (check gyro-circuit)))

(clefrule rulc062 "rule062"
?em <- (error-message imu-major)

?pi <- (previous-imu-major? yes)

(error-code-phase)

(assert (check speed-stability)))

(defrule attribute-yz-speed-control-stable "rules 63, 64"
?cs <- (check speed-stability)
(error-code-phase)

(assert (frame dflorna,131 dflorian127)))

(defrule ruleO63 "ruleO63"
?cs <- (check speed-stability)

?ys <- (yz-speed-control stable)

(error-code-phase)

(assert (faulty displacement-gyroscope-xy)))

E-54

Appendix E: CLIPS Source Code

(defrule rule064 "ruleO64"

?cs <- (check speed-stability)

?ys <- (yz-speed-control unstable)

(error-code-phase)

(assert (faulty displacement-gyroscope-yz)))

;*** This group of rules corresponds to the following error

;*** messages: automatic.shutdown and pwr.interrupt. The
;* ** latter error is an error which does not stop the current

;*** Mode A test.

(defrule attribute-operator-initiated-shutdown "rules: 65, 67"
?em <- (error-message ?error)

(test (or (eq ?error automatic-shutdown)
(eq ?error pwr-interrupt)))

(error-code-phase)

(assert (frame dflorian62)))

(defrule rule065 "ruleO65"
?em <- (error-message ?error)

?oi <- (operator-initiated-shutdown? yes)

(test (or (eq ?error automatic-shutdown)

(eq ?error pwr-interrupt)))

(error-code-phase)

(assert (normal-response to-operator-action)))

(defrule ruleO66 "ruleO66"
?nr <- (normal-response to-operator-action)

(error-code-phase)

(assert (frame dflorian63)))

(defrule ruleO67 "rule067"
?em <- (error-message ?error)

?oi <- (operator-initiated-shutdown? no)

(test (or (eq ?error automatic-shutdown)

E-55

Appendix E: CLIPS Source Code

(eq ?error pwr-interrupt)))
(error-code-phase)

(assert (attempt restart)))

(defrule attribute-restart-possible "rules: 68, 69"
?ar <- (attempt restart)

(error-code-phase)

(assert (frame dflorian64)))

(defrule rule068 "ruleO68"
?ar <- (attempt restart)

?rp <- (restart-possible? no)

(error-code-phase)

(assert (check power-cube)))

(defrule rule069 "ruleO69"
?ar <- (attempt restart)

?rp <- (restart-possible? yes)

(error-code-phase)

(assert (frame dflorian.65 dflorian 127)))

(defrule attribute-power-cube-good "rules: 70, 71"
?cp <- (check power-cube)

(error-code-phase)

(assert (frame dflorian66)))

(defrule rule07O "ruleO70"
?cp <- (check power-cube)
?pc <- (power-cube good)

(error-code-phase)

(assert (contact te)))

(defrule rule071 "ruleO7 1"
?cp <- (check power-cube)

E-56

Appendix E: CLIPS Source Code

?pc <- (power-cube bad)
(error-code-phase)

(assert (faulty power-cube)))

;*** This rule corresponds to plat stab abort error. It also
;*** uses the Check Gyro Circuit Routine which starts with
;*** rule 043.

(defrule rule077 "ruleO77"
?er <- (error-message plat-stab-abort)

(error-code-phase)

(assert (check gyro-circuit)))

;*** This group of rules corresponds to the gyro hot error
'*** message.

(defrule attribute-cooling-hose-is-connected "rules: 95"
?em <- (error-message gyro-hot)

(error-code-phase)

(assert (frame dflorian80)))

(defrule rule095 "ruleO95"
?em <- (error-message gyro-hot)

?ch <- (cooling-hose not-connected)

(error-code-phase)

(assert (frame dflorian8l)))

(defrule rule096 "ruleO96"
?em <- (er'or-message gyro-hot)

?ch <- (cooling-hose connected)

(error-code-phase)

(assert (check meter-m2-position-21)))

(defrule attribute-position-21-setting-is-normal "rules: 97, 98"

E-57

Appendix E: CLIPS Source Code

?cm <- (check meter-m2-position-2 1)
(error-code-phase)

(assert (frame dflorian82 dflorian 124)))

(defrule ruleO97 "ruleO97"
?cm <- (check meter-m.2-position-2 1)

?2<- (position -2 1 -setting-is-normal? no)
(error-code-phase)

(assert (move to mode-b)))

(defrule ruleO98 'ruleO98"
?c-n <- (check rneter-m2-position-21)

?p2 <- (po~sition-2 i-setting-is-normal? yes)
(error-code-phast)

(assert (check meter-rm2-position-l 1)))

(defrule attribute-position-II -setting-is-normal "rules: 99, 100"
?cm <- (check meter- m2-pos ition -11)
(error-code-phase)

(assert (frame dflorian83 dflorian 127)))

(defrule ruleO99 "ruleO99"
?cm <- (check meter- m2-position- 11)
?pI <- (position-i 1I-setting-is-normal? no)
(error-code-phase)

(assert (frame dflorian84)))

(defrule rule 100 "rule 100"
?cm <- (check meter-m2-position-1 1)
?plI <- (position-i 1I-setting-is-normnal? yes)
(error-code-phase)

(assert (frame dflorian85)))

E-58

Appendix E: CLIPS Source Code

SThis group of rules corresponds to z stab error message.

(defrule rulel108 "rule 108"
?ern <- (error-message z-stab)
(error-code-phase)

(assert (check a-to-d-converter-z- stab)))

(defr-ule attribute-number-of-axes-not-zero "rules: 109, 112"
?ca <- (check a-to-d-converter-z-stab)
(error-code-phase)

(assert (frame dflorian89 dflorian12))

(defrule rulelO9 "rulelO9
?ca <- (check a-to-d-converter-z- stab)
?no < (number-of-axes-not-zero all)

(error-code-phase)

(assert (check case-rotation)))

(defrule attribute-case-rotation-normal "rules: 110, 111"
?cc <- (check case-rotation)
(error-code-phase)

(assert (frame dflorian90 dflorian 124)))

(defrule rule 110 "rule 110"
?cc <- (check case-rotation)
?cr <- (case-rotation normal)
(error-code-phase)

(assert (move to mode-b)))

(defrule ruleIl "ruleI I"
?cc <- (check case-rotation)
?cr <- (case-rotation not-normal)
(error-code-phase)

(assert (faulty corresponding-gyro)))

E-59

Appendix E: CLIPS Source Code

(defrule rule 1 12 "rule 1 12"
?ca <- (check a-to-d-converter-z-stab)
?no <- (number-of-axes-not-zero one)
(error-code-phase)

(assert (interchange gimbal-rate-amps)))

(defrule attribute-problem-follows-gimbal -rate- amp "rules: 113, 114'
?ig <- (interchange gimnbal-rate-amps)
(error-code-phase)

(assert (frame dflorian9l)))

(defrule rulel 113 "rule 113"
?ig <- (interchange gimbal-rate-amps)
?pf <- (problem-follows-gimbal-rate-amp? yes)
(error-code-phase)

(assert (faulty corresponding-gimbal-rate-amp)))

(defrule rule 114 "rule 114"
?ig <- (interchange gimbal-rate-amps)
?pf <- (problem-follow s-gimbal -rate- amp? no)
(error-code-phase)

(assert (exchange electronic-control-amps)))

(defrule exchange-electronic-control-amps
?ee <- (exchange electronic-control-amps)

(assert (frame dflorian382)))

(defrule rule 115 "rule 115"
?ee <- (exchange electroic-control-amps)
?pf <- (problem-follows-amp? yes)
(error-code-phase)

(assert (faulty corresponding-electronic-control-amp)))

E-60

Appendix E: CLIPS Source Code

(defrule rule 116 "rule 116"
?ee <- (exchange electronic-control-amps)

?pf <- (problem-follows-amp? no)

(error-code-phase)

(assert (move to mode-b)))

;*** This group of rules corresponds to servo disable error

, message.

(defrule rule 117 "rule117"
?em, <- (error-message servo-disable)
(error-code-phase)

(assert (check a-to-d-converter-servo-disable)))

(defrule attribute-all-three-axes-near-zero "rules: 118, 119"
?ca <- (check a-to-d-converter-servo-disable)

(error-code-phase)

(assert (frame dflorian92 dflorian 124)))

(defrule rulel 18 "rulel 18"
?ca <- (check a-to-d-coniverter-servo-disable)
?at <- (all-three-axes-near-zero? yes)

(error-code-phase)

(assert (check test-point-23)))

(defrule rule 119 "rule 119"
?ca <- (check a-to-d-converter-servo-disable)
?at <- (all-three-axes-near-zero? no)

(error-code-phase)

(assert (interchange rate-amps)))

(defrule attribute-problem-follows-board "rules: 120, 121"
?ir <- (interchange rate-amps)

E-61

Appendix E: CLIPS Source Code

(error-code-phase)

(assert (frame dflorian93 dllorian 127)))

(defrule rulel2O "rulel2O"
?ir <- (interchange rate-amps)
?pf <~- (problem-follows-board? no)
(error-code-phase)

(assert (move to mode-b)))

(defrule rulel121 "rule121"
?ir <- (interchange rate-amps)
?pf <- (problem-follows-board? yes)
(error-code-phase)

(assert (faulty correspondi ng- gimbal -rate -electronic-control -amp)))

(defrule attribute-power-supply-4.8khz-good "rules: 122, 123"
?ct <- (check test-point-23)

(error-code-phase)

(assert (frame dflorian94 dflorian 124)))

(defrule rule 122 "rule 122"
?ct <- (check test-point-23)
?ps <- (power- supply-4.8khz good)
(error-code-phase)

(assert (check test-point-13)))

(defrule rule 123 "rule 123"
?ct <- (check test-point-23)
?ps <- (power-supply-4.8khz bad)
(error-code-phase)

(assert (replace power-supply-4.8khz)))

(defrule aturibute-replacing-power- supply- solved-problem "rules: 124, 125"
?rp, <- (replace power- supply-4.8khz)

E-62

Appendix E: CLIPS Source Code

(error-code-phase)

(assert (frame dflorian95)))

(defrule rule 124 "rule 124"
?r4 <- (replace power- supply -4.8kb z)
?np <- (new-power- supply- solved-problem? yes)

(eiror-code-phase)

;(assert (faulty-component power-supply-4.8khz))
(assert (fault-found power- supply-4.8khz continue-testing)))

(defrule rule 125 "rule 125"
?r4 <- (replace power- supply-4.8khz)
?np <- (new-power- supply- solved-problem? no)

(error-code-phase)

(assert (move to mode-b)))

(defrule attribute-power-supply-400hz-good 'rules: 126, 127"
?ct <- (check test-point- 13)
(error-code-phase)

(assert (frame dflorian96 dflorianl124)))

(defrule rule 126 "rule 126"
?ct <- (check test-point- 13)
?Os <- (power-supply-400hz good)
(error-code-phase)

(assert (fr-ame dflorian97)))

(defrule rule127 "rule127"
?ct <- (check test-point- 13)
?ps <z- (power- supply-400hz bad)
(error-code-phase)

(assert (frame dflorian98)))

E-63

Appendix E: CLIPS Source Code

;*** This group of rules corresponds to excess angle error

•*** message.

(defrule attribute-imu-in-caged-mode "rules: 128, 129"
?%.r <- (error-message excess-angle)
(error-code-phase)

(assert (frame dflorian99 dflorian 127)))

(defrule rule 128 "rulel28"
?em <- (error-message excess-angle)
?ii <- (imu-in-caged-mode? no)
(error-code-phase)

(assert (not-indication-of-fault)))

(defrule rulel29 "rulel29"
?em <- (error-message excess-angle)
?ii <- (imu-in-caged-mode? yes)

(error-code-phase)

(assert (return-to-test)))

(defrule attribute-able-to-restart "rules: 130,131"
?rt <- (return-to-test)
(error-code-phase)

(assert (frame dflorian 100 dflorian 124)))

(defrule rule 130 "rule 130"
?rt <- (return-to-test)
?at <- (able-to-restart? no)

(error-code-phase)

(assert (move to mode-b)))

(defrule rule 131 "rule 131"
?rt <- (return-to-test)
?at <- (able-to-restart? yes)
(error-code-phase)

E-64

Appendix E: CLIPS Source Code

(assert (monitor pickoffs)))

(defrule attribute-angle-occurs-first-on "rules: 132, 133, 135, 136"
?rnp <- (monitor pickoffs)

(error-code-phase)

(assert (frame dflorianlOl dflorian127)))

(defrule rule 132 "rule 132"
?mp <- (monitor pickoffs)

?ao <- (angle-occurs-first-on xy-pickoff)

(error-code-phase)

(assert (replace ar8)))

(defrule rule 133 "rule 133"
?mp <- (monitor pickoffs)

?ao <- (angle-occurs-first-on yz-pickoff)

(error-code-phase)

(assert (replace ar8)))

(defrule attribute-replacing-ar8-helps "rules: 134-136"
?ra <- (replace ar8)
(error-code-phase)

(assert (frame dflorian102 dflorian124)))

(defrule rule 134 "rule 134"
?ra <- (replace ar8)

?na <- (new-ar8-helps? yes)

(error-code-phase)

;(assert (faulty-component platform-signal-amp))

(assert (fault-found platform-signal-amp continue-testing)))

(defrule rule135 "rulel35"
?ra <- (replace ar8)

E-65

Appendix E: CLIPS Source Code

?na <- (new-ar8-helps? no)

?ao <- (angle-occurs-first-on xy-pickoff)

(error-code-phase)

(assert (frame dflorian 103)))

(defrule rule 136 "rule 136"
?ra <- (replace ar8)
?na <- (new-ar8-helps? no)
?ao <- (angle-occurs-first-on yz-pickoff)

(error-code-phase)

(assert (frame dflorian 104)))

E-66

cjn

z Ono

9zz-E 0
* 04

070
Ono E-4

I~gIsjSuoqslnoLofswv,, gx- ad

Z-A

ox ;&0
"-4 1

0~gslutoyaqoiLifavi 0. ~pad

1 -99 Isaj~~~~~ Suooialni o aag: pa

a a

ci~ziziziINC~
Tii,

z ;oooooooo'o ;6oqo~o0~0;O4 2 2l
0, % i 0'; co2

o 000&ji o ,-

(A ;Ooo~j - 0
Ul RO004 OOO0 10 010 _ ~

tqtqq010110 0

qoqoooqo 1 00 001
A0 iloo

I -g Isal 8uypooijsajqnoqto .wsawi :g xlpuaddy

:4

;To

Lo*

_ Cum

z

[*gg Isa 3u~uooqalqnoiljolavg: ~pa

Appendix G: Modified CLIPS Main Routine

This appendix lists the modified CLIPS main routine used in the prototype.
CLIPS version 4.20 was used during development.

/***** Modified CLIPS main.c routine used in developing the prototype. ***/

#include <stdio.h>
#include <sys/file.h>
#include "clips.h"

#define BUFSIZE 512 /* max buffer size */

main() /* start of main routine */

{

init.clipso;
setwatch("all",l); /* used when debugging */
loadrules("dmins.rules"); /* automatically load rules */
resetclipsO;
run(-1); /*fire as many rules as possible*/

/* end of main routine */

int get kms_infoO /* routine to read kmsinfo file */

I

int fd, n;
char buffer[BUFSIZE];

fd = open("kmsinfo",ORDONLY); /* open kmsinfo as read only */

while ((n = read(fd, buffer, BUFSIZE)) > 0) /* read one line */
buffer[n] = EOF; /* put EOF at end of line read */

close(fd); /* close kmsinfo */

system("rm kmsinfo"); /* delete kmsinfo */

if (strncmp(buffer,"start mode-a",12) = 0) /* start another user session */{
reset.clipso;
excise-rulef'start-up"); /* only used once at first start */
assert(buffer);

G-1

Appendix G (cont.)

run(-1);
I

if (strncmp(buffer,"quit",4) != 0) /* quit CLIPS if session over */
assert(buffer);

if (strncmp(buffer,"quit",4) == 0) /* quit CLIPS if session over */

clearclipsO;

return;

int kms_file readyO /* routine to check ok-clips file */

int isready, fd, n;
char buffer[I];
char one[IJ;
one[O] = '1';
is-ready = 1;

while (is_ready != 0)

system("sleep 1"); /* wait if file is not ready */
if ((fd = open("ok-clips",ORDONLY)) != -1) /* if file is ready then */

n = read(fd, buffer, 1); /* read one character */
is-ready = stmcmp(buffer,"1",l); /* if = 1 kmsinfo file is ready */
close(fd); /* close semaphore file */

}

fd = open("okclips",OWRONLY); /* if file was ready to read */
buffer[0] = '0'; /* set the semaphore file to */
write(fd, buffer, 1); /* so that it can't be read again */
close(fd);

return;

G-2

Appendix G (cont.)

usrfuncs() /* user defined functions *
/* within CLIPS rules *

extern it get-kms-infoo;
extem n t kins-file-readyO;
define_function("get krns_info", 'V, get kms-info, "getjcnsisnfo");
define-function("kms file-ready",'v, kms-file-ready, "kmns_file_ ready");

G-3

Bibliography

Al Squared, Inc. Intelligent Diagnostic Expert Assistant (IDEAT) The Field Service
Solution. Company brochure, 1989.

AI Squared, Inc. "Hypertext Help," Company letter, 1989.

Akscyn, Robert M. and others. "KMS: A Distributed Hypermedia System For Managing
Knowledge in Organizations: Communications of the ACM, 31: 820-835 (July
1988).

Apple Computer, Inc. HyperCard's User Guide. 1987.

Beeman, William 0. and others. Hypertext and Pluralism: From Lineal to Non-lineal
Thinking. Hypertext '87, Department of Computer Science, University of North
Carolina at Chapel Hill , November 1987, pages 67-88.

Blais, Curt and others. "Artificial Intelligence to Support Avionics Maintenance
Diagnostics: A State-of-the-Art-Assessment," Air Force Human Resources
Laboratory. (Jan 1984).

Brownston, Lee and others. Programming E.xpert Systems in OPS5: An Introduction to
Rule-Based Programming. Reading, MA., Addison-Wesley Publishing
Company, Inc., 1985.

Bush, Vannevar. "As We May Think," The Atlantic Monthly, Volume 176, pages 101-
108, July 1945.

Charney, Davida. Comprehending non-linear text: The Role of Discourse Cues and
Reading Strategies. Hypertext '87, Department of Computer Science, University
of North Carolina at Chapel Hill, November 1987, pages 109-120.

Cohen, Paul R. and Edward A. Feigenbaum. The Handbook of Artificial Intelligence
Volume 3: New York: McGraw-Hill Book Company, 1982.

Conklin, Jeff. "Hypertext: An Introduction and Survey," IEEE Computer, 20: 17-41
(September 1987).

BIB-I

Bibliography (cont.)

Davis, Kathy and Janet Huebner. Expert Missile Maintenance Aid (EMMA) Phase H
Volume 1: Technical Discussion. June 1989.

Davis, Larry and others. "Expert Computer Systems for Missile Maintenance," Final
Report August 1982-August 1983. (AD-A13315).

Davis, Randall and Walter Hamscher. "Model-based Reasoning: Troubleshooting,"
Exploring Artificial Intelligence: Survey Talks from the National Conferences on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann Publishers, 1988.

Delisle, N. and M. Schwartz. "Neptune: A hypertext system for CAD applications,"
Proceedings of ACM SIGMOD International Conference on Management of
Data (Washington DC, May 1986), ACM, New York, 132-143.

Fikes, Richard and Tom Kehler. The Role of Frame-Based Representation in Reasoning.
Communication of the ACM, Volume 29, Number 9, September 1985, pages
904-920.

Gold Hill Computers, Inc. GoldWorks II Graphics Toolkit User's Guide. February
1989.

Gordon, Peter J. Human Factors in the Design of User Interfaces and Menus.
Unpublished paper. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1989.

Gunning, David. Telephone interview. AFHRL/, Wright-Patterson AFB OH, 5
September 1989.

Halasz, Frank G. "Reflections on NoteCards: Seven Issues For the Next Generation of
Hypermedia Systems," Communications of the ACM, 31: 836-852 (July 1988).

Harmon, Paul and David King. Expert Systems: Artificial Intelligence in Busines. New
York, NY. John Wiley and Sons, Inc., 1985.

Harmon, Paul and others. Expert Systems: Tools & Applications. New York, NY.
John Wiley and Sons, Inc., 1988.

BIB-2

Bibliography (cont.)

Hayes-Roth, Frederick and others. Building Expert Systems. Reading, MA: Addison-
Wesley Publishing Company, 1983.

Hayes-Roth, Frederick. "Rule-Based Systems," Communications of the ACM, Volume
28, Number 9, September 1985, pages 921-932

Hester, Lt. Gina L. A Prototype Fault Diagnosis System for NASA Space Station Power
Management and Control. Naval Post Graduate School. September 1988.

IntelliCorp, Inc. KEE User's Guide. May 1988.

Johnson Space Center, Artificial Intelligenc.e Section. CLIPS Reference Manual. April
1988.

Knowledge Gardens Inc. Advertisement for KnowledgePro software. AIExpert, October
1989, page 2.

Knowledge Systems. KMS Action Language Manual. 1989.

McArthur, Capt Tim. Telephone interview. ASD/B 1LRE, Wright-Patterson AFB OH, 29
Aug 1989.

Nelson, Thomas H., "The Hypertext," Proceedings International Documentation
Federation, 1965.

Nielson, Jakob. "HyperTEXT '87," HyperCard software stack, 1989.

O'Reilly, Daniel and others. "Using Hypernedia to Develop an Intelligent
Tutorial/Diagnostic System for the Space Shuttle Main Engine Controller Lab,"
Marshall Space Flight Center, Fourth Conference on Artificial Intelligence for
Space Applications:467-476. (August 1988).

Rasmus, Dan. "HyperX," MacUser, pp. 259-260, January 1989.

Rasmussen, Steven J., "Expert System for Depot Maintenance of the Dual Miniature
Inertial Navigation System," 1988 IEEE National Aerospace and Electronics
Conference, pp. 1369-1374, May 1988.

BIB-3

Bibliography (cont.)

Saja, Allen D. "The Cognitive Model: An Approach to Designing the Human-Computer
Interface," SIGCHI Bulletin, 16:36-39 (January 1986).

Schoen, Seymour and Wendell G. Sykes. Putting Artificial Intelligence to Work:
Evaluating & Implementing Business Applications. New York, NY. John
Wiley and Sons, Inc., 1987.

Silberschatz, Abraham and James L. Peterson. Operating System Concepts (Alternate
Edition). Reading, MA: Addison-Wesley Publishing Company, 1988.

Skinner, Lt James M. A Diagnostic System Blending Deep and Shallow Reasoning. MS
thesis, AFIT/GCEIENG/88D-5. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1988.

Smith, J. H., "WE: A writing environment for professionals," Technical Report 86-025,
Department of Computer Science, University of North Carolina at Chapel Hill,
August 1986.

Smith, John B. and Stephen F. Weiss. "Hypertext," Communications of the ACM, 31:
820-835 (July 1988).

Somers, Larry. "An Intelligent Knowledge-Based Tutoring System for a Transponder Test
Set." Final Report Aug 87-Feb 88. (August 1988).

Stone, David E. and others. "A Hypertext Electronic Job Aid for Maintenance," Final

Report, 30 Nov 1982. AD-A133103

Teknowledge, Inc. S.1 Reference Manual. September 1987.

Thomas, Donald L. and Jeffrey D. Clay. "Computer-Based Maintenance Aids For
Technicians: Project Final Report," Air Force Human Resources Laboratory,
AFHRL-TR-87-44 (August 1988).

Trigg, Randall H. and Peggy M. Irish. "Hypertext Habitats: Experiences of Writers in
NoteCards," Hypertext '87, Department of Computer Science, University of
North Carolina at Chapel Hill , November 1987.

BIB-4

Bibliography (cont.)

Waterman, Donald A. A Guide to Expert Systems. Reading, MA: Addison-Wesley
Publishing Company, 1986.

Winston, Patrick Henry. Artificial Intelligence. Reading, MA. Addison-Wesley
Publishing Company, 1977.

BIB-5

Vita

Captain Daniel J. Florian 1976,

he moved to St. Louis, Missouri

Dan joined the Air Force in November of 1978 and was accepted into the Airman Education

and Commissioning Program in September of 1982. He received a Bachelor of Science

degree in Computer Science from the University of Missouri at Rolla, Missouri in May

1985 and, after completing Officer Training School, was commissioned as a second

lieutenant in the USAF in August 1985. He worked for HQ TAC at Langley AFB,

Virginia as an embedded systems project manager until entering the School of Engineering,

Air Force Institute of Technology, in May 1988.

VITA-I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE 0M8 No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASS IFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

ASSIFICATION/DOWNGRADiNG SCHEDULE Approved for public release;

Distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89D-3
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)
Wright-Patterson AFB, Ohio 45433-6533

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AI Technology Office WRDC/TXI
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
WRDC/TXI ELEMENT NO. NO. NO ACCESSION NO

Wright-Patterson AFB, Ohio 45433-6523

11. TITLE (Include Security Classification)
USE OF HYPERMEDIA FOR AN ARTIFICIAL INTELLIGENCE-BASED PROBLEM SOLVER (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Daniel J. Florian, Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO 891204 136

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Expert Systems, Hypermedia, Hypertext, User Interface,
12 05 Maintenance Diagnostics
12 09

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Lt Col Charlie Bisbee

(see reverse)

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED g1 SAME AS RPT El DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Charles R. Bisbee, Lt Col, USAF (513) 255-9265 AFIT/ENG

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

A bstract

The use of expert systems as the problem solving strategy in maintenance diagnostic environments

has proliferated in the last few years. This is due primarily to the ease with which a diagnostic system can

be developed using the expert system approach compared to using other techniques, particularly

conventional programming. One important feature which determines the success of such a s,,stern is the

user interface. Typically, the user interface of an expert system is entirely textual. While developing

graphical user interfaces are possible, it requires the programmer to either integrate the expert system %k ith

externally written graphics routines, or to use the expert system's own, usually LISP-based, programming

language. Either method requires experienced programmers to perform many iterations of code development

until tihe user interface is complete. Additionally, in complex problem domains such as maintenance

diag'nostics, it is often difficult to accurately represent the problem in words alone. Especially for the

novice, describing the problem not only in \kords but also with graphics, facilitates a better understarding

of the problem; thus, increasing the probability that the appropriate solution is selected.

This thesis discusses the use of a hypermedia system as the user interface for an expert system. The

hypennedia system allowed dynamic creation and editing of the user interface, and collected and transmitted

information from the user to the expert system. The expert system, which remains transparent to the user.

uses this information to recommend a solution to the problem or to determine more information is needed

from the user. Regardless, the expert system communicates these resuits to the hypermedia system, which

then displays them to the user.

Specifically, the prototype developed as a part of this research was designed to help Aerospace

Guidance and Metrology Center (AGMC) depot-level technicians troubleshoot the Dual Miniature Inertial

Navigation Systems (DMINS) Inertial Measurement Unit (IMU), which is being used on fast attack

submarines. Currently, DMINS 'echnicians use information from automatic test equipment (ATE) to guide

their troubleshooting actions. This ATE is driven entirely by test failures resulting from the tested IMU

signals being out of the specification limits. In addition to using these signals, the prototype uses IMU

signals, not being validated by the current test, to detect problems before a test failure occurs. The

capability to find problems prior to a test failing, can significantly decrease the time needed to tcst an NIU.

A one-day user evaluation of the prototype by an experienced DMINS technician was conducted and

documented. The user especially liked the large screen u ed to display information, the mouse as an Input

device, the applicability of the prototype as a training aid, and the ease at which the user interface could be

modified. The prototype is nearly a complete system, covering the majority of the DMINS troubleshooting

knowledge.

UNCLASS lFIED

